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ABSTRACT. Let G be a transitive permutation group on a finite set with solvable point stabiliser.
In 2010, Vdovin conjectured that the base size of G is at most 5. Burness proved this conjecture
for primitive G. The problem was reduced by Vdovin in 2012 to the case when G is an almost
simple group, and reduced to groups of Lie type by Baykalov and Burness. This is the second
paper of the series devoted to the study of Vodvin’s conjecture for classical groups. In the first
paper, we prove a strong form of the conjecture for almost simple groups with socle isomorphic
to PSL,(g). In the present paper we extend this result to almost simple groups with socle
isomorphic to PSU,(¢q) and PSp,,(¢). The final paper will establish the conjecture for orthogonal
groups. Together, these three paper will complete the proof of Vdovin’s conjecture for all almost
simple classical groups.
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1. INTRODUCTION

1.1. Main problem and results. Consider a permutation group G on a finite set 2. A base
of G is a subset of € such that its pointwise stabiliser is trivial. The base size of G is the
minimal size of a base. The study of bases and base sizes of permutation groups is an active
research area with a rich history. These concepts have applications in abstract group theory
and computational algebra; for a summary, see [2] and [13]. In a case of a transitive group G
with point stabiliser H, we write by (G) for the base size, noting that the action of G on § is
permutation isomorphic to the action of G on right H-cosets by right multiplication.

This paper is the second in a series of three devoted to the study of base sizes of finite
transitive permutation groups with solvable point stabilisers. In [29, Problem 17.41 b)], Vdovin
conjectures (in a slightly different notation) that bg(G) < 5 for a transitive permutation group G
with a solvable point stabiliser S. In [14] Burness proved this conjecture in the case of primitive
G. We mention that Seress [35] established bs(G) < 4 in the case of solvable primitive G, so
the maximal subgroup S, of course, is solvable as well. Notice that the bound in the conjecture
is the best possible since bg(G) = 5 if G = Sym(8) and S = Sym(4) ! Sym(2). This can be
easily verified. In fact, there are infinitely many examples with bs(G) = 5, for example see [14,
Remark 8.3].
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Vdovin reduces the above conjecture to the case of almost simple group G in [38, Theorem 1].
In order to explain how exactly the reduction works, let us define Reg(G, k) to be the number
of distinct regular orbits in the action of a permutation group G < Sym(Q) on QF; here G acts
on QF by

(a1,...,0)g = (a1g, ..., %kg).
Analogous to by (G), we write Regy (G, k) for Reg(G, k) in the case when Q is the set of right
cosets of a subgroup H. Since a regular point in QF forms a base for G acting on 0, Reg (G, k) =
0 for k < by (G). Now we return to the reduction: [38, Theorem 1] implies that, in order to
prove Vdovin’s conjecture, it is sufficient to show

RegS(G7 5) >5

for every almost simple group GG and each of its maximal solvable subgroups S; that is, S is not
contained in any larger solvable subgroup of G. This inequality is established for almost simple
groups with alternating and sporadic socle in [3] and [15] respectively. Therefore, Vdovin’s
conjecture is now reduced to the case of almost simple group of Lie type. Our paper [5] is the
first to consider the general form of the conjecture for groups of Lie type. There we prove the
above inequality for all maximal solvable subgroups S of an almost simple group G with socle
isomorphic to PSL,(q).

In this paper, we consider almost simple groups groups with socle isomorphic to PSU,(q) or
PSp,,(¢)" and prove the following.

Theorem 1.1. Let Gq be a classical finite simple group of Lie type with socle isomorphic to either
PSU,(q) or PSp,(q)". If S is a mazimal solvable subgroup of Aut(Gy), then Regg(S-Gop,5) > 5.
In particular, bg(S - Gg) < 5.

We briefly summarise the structure of an almost simple group with socle PSU,,(q) or PSp,,(¢)’
(see [21] for details). Then we state more detailed results which also illustrate the cases that
arise in the proof.

Since PSUsz(q) = PSpy(q) = PSLa(g), we only need to consider PSU,(q) for n > 3 and
PSp,,(¢)" for n > 4. Note that PSp,,(¢§) = PSp,,(¢)" is simple for n > 4 unless (n,q) = (4,2)
where the simple subgroup PSp,(2)’ has index 2 in PSp,(2). Let I'U,(¢q) and I'Sp,(q) be the
groups of semisimilarities of a non-degenerate n-dimensional unitary and symplectic spaces over
F,2 and [, respectively (see Section 2.1 for details) and let Z be the group of all scalar matrices
in the corresponding group. If PSU,(q) is simple, so (n,q) # (3,2), then

Aut(PSU,(q)) = PT'U,(q) = T'U,(q)/Z.
Unless (n,q) = (4,2/) for some f > 1,

Aut(PSp,(q)) = PI'Sp,(¢q) = I'Sp,(q)/Z.

If (n,q) = (4,2f), then PSp,(q)’" has a graph-field automorphism of order 2f; see [19, §12.3] for
details.
We establish Theorem 1.1 by proving the following three statements.

Theorem Bl. Let n > 3 and (n, q) is not (3,2). If S is a maximal solvable subgroup of PT'U,(q),
then one of the following holds:
(1) bs(S-PSU,(q)) <4, so Regg(S -PSU,(q),5) > 5;
(2) (n,q) = (5,2) and S is the stabiliser in PT'Uy,(q) of a totally isotropic 1-dimensional
subspace of the natural module, bg(S - PSU,(q)) =5 and Regg(S - PSU,(q),5) > 5.
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Theorem Cl. Let n > 4. If S is a mazximal solvable subgroup of PI'Sp,(q), then bg(S -
PSpn(Q)) <4, so RegS(S ’ PSpn(Q)a 5) 2 5.

Theorem C2. Let q be even and let A = Aut(PSpy(q)). If S < A is a mazimal solvable
subgroup, then bs(S - PSpy(q)') < 4, so Regg(S - PSp,(¢)',5) > 5.

Theorem 1.1 now follows from Theorems B1, C1 and C2 via the following lemma proved in
[5, Section 2.1].

Lemma 1.2. Let Gy be a finite simple nonabelian group. Let Gy < G < Aut(Go) and let S < G
be solvable. If Regp(H - Go,5) > 5 for every maximal solvable subgroups H of Aut(Gp), then
Regg(G,5) > 5, for every solvable subgroup S of G.

1.2. Methods and ideas. It is convenient for us to work with groups of matrices which makes
the action on the set of right cosets of a subgroup not faithful in most cases. It is possible to
extend the notion of by (G) and Regy (G, k) to an arbitrary finite group G by

by (G) :==b(G/Hg) and Regy (G, k) := Reg(G/Hg, k).

Here Hg = NgeqHY and the action of G/Hg on the set € of right cosets of H in G is in-
duced from the natural action of G. Another straightforward but important fact is that the
statement by (G) < k is equivalent to the existence of k subgroups of G conjugate to H in G
such that their intersection is equal to Hg. Indeed, H9 N ... N H9% is the pointwise stabiliser
of (Hgi,...,Hgr) € Q. In particular, in the proofs of Theorems Bl and C1, we work with
I'U,(q) and I'Sp,,(q) rather than PI'U,(¢) and PI'Sp,(¢). To discuss unitary and symplectic
groups simultaneously, we let A € {GU,(q),GSp,,(¢)} and let u be 1 in symplectic case and 2
in unitary case, so A € GL,(q").

Now we are ready to outline the main approaches and ideas of this paper. We use a combi-
nation of probabilistic, constructive and computational methods to establish our results. The
probabilistic method is described in details in Section 2.3. It uses the ratio of points fixed by an
element of the group G < Sym(f2) to obtain an upper bound on the probability Q(G, c¢) that a
randomly chosen c-tuple of points in € is not a base. By showing Q(G, ¢) < 1, one shows that
there exists a base of size c. This method is used in most works related to base sizes of primitive
permutation groups including [12, 13, 16, 17, 32, 34]. We use this method to obtain bounds for
bs(S - (ANSL,(¢"))) for irreducible maximal solvable subgroups of A. In particular, with an
explicit list of exceptions, we obtain bg(S - (A N SL,(¢"))) < 3 (see Theorems 3.21 and 3.22).
Our results are refinements of [12, Theorem 1] in the sense that they provide better estimates
for by (G) for solvable H not lying in a Cj-subgroup of an almost simple unitary or symplectic
G < PGLn(g%).

The probabilistic method does not work for us in the general case since the fixed points ratio
is much harder to estimate when S is reducible. Our reduction of the general case to the case of
an irreducible subgroup of A is constructive. We illustrate this for a reducible maximal solvable
subgroup S of A; the analysis for S not contained in GL,(¢") is much more technical and splits
into number of smaller cases but applies the same general idea. Let S be a reducible maximal
solvable subgroup of A. By Lemma 2.8, in a suitable basis, matrices in S have blocks on their
diagonal and all the entries below these blocks are zero. The projection on each block forms an
irreducible solvable matrix group of smaller dimension for which we can apply Theorems 2.11,
3.21 and 3.22. As a result, we obtain that the intersection of three (in most cases) conjugates
of S consists of upper triangular matrices. Using the symmetry of matrices of shape (2.8), it is
possible in most cases to adjust one of the conjugating elements so that the intersection of the
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three conjugates consists of diagonal matrices. Further, we explicitly construct a fourth element
of ASL,(g") that, as a result of using it as a conjugating element, give us the subgroup of scalar
matrices in the intersection of four conjugates of S, so bg(S - (AN SL,(¢"))) < 4. Case 1 in
Step 2 of the proof of Theorem 4.5 illustrates well this method.

Both our theoretical tools, probabilistic method and the constructive method, turn out to
be powerful, yet technical and demanding in terms of details. They require knowledge of the
structure of solvable subgroups of classical groups. Here we heavily rely on the classical work of
Suprunenko [37] and that of Manz and Wolf [33]. We also use some information from a recent
work of Korhonen [31] where maximal solvable subgroups of GL,(q), GSp,,(¢) and GO;,(q) are
classified.

We use the computer algebra systems GAP [22] and MAGMA [6] to find and verify bg(G) for
some small values of n and ¢ when theoretical approach does not provide a sufficient result.
Mostly, we use computations when an irreducible maximal solvable subgroup of A is “too large”
and it is much easier to obtain results this way rather than establish a suitable estimate for
Q(G, ¢). For details see [4, Section 2.7].

The paper is organised as follows. In Section 2 we present necessary definitions and prelim-
inary results. In Section 3 we obtain bounds for bg(S - (A N SLy,(¢")) for irreducible maximal
solvable subgroups S of A € {GU,(q), GSp,,(¢)}. Finally, we use these results to prove Theorems
B1, C1 and C2 in Sections 4 and 5.

2. DEFINITIONS AND PRELIMINARIES

All group actions we use are right actions. For example, the action of a linear transformation
g of a vector space V onv € V is (v)g € V.

Let p be a prime and g = pf, f € N. Denote a finite field of size g by [F,, its algebraic closure
by F, and the multiplicative group of F, by ;. Throughout, unless stated otherwise, V' = Fju
denotes a vector space of dimension n over Fgou with u € {1, 2}.

For finite classical groups we follow the notation of [30]. For algebraic groups our standard
references are [20, Chapter 1], [25, Chapter 1] and [26].

We reserve the letter 5 for a basis of V. A basis is an ordered set. If o € Aut(F), then ¢g(c)
denotes the unique g € I'L(V,F) such that

<Z Ai”i) (ng(a) = Z )\?’Ui (2.1)
i=1 i=1
where = {v1,...,v,}. f F = Fgu and o € Aut(F) is such that A* = AP for all A € F, then we
denote ¢g(v) by ¢ or simply ¢ when § is understood. It is routine to check (see [30, §2.2]) that
TL(V,Fgu) = GL(V,Fyn) % (6) = GLu(q%) » (9).
We fix the following notation.

F(G) Fitting subgroup of a finite group G' (unique maximal
normal nilpotent subgroup);

0:(G) unique maximal normal 7-subgroup for a set of primes 7;

Z(G) center of a group G;

g¢ conjugacy class of g € G,

AxB semidirect product of groups A and B with A normal;
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Sym(n) symmetric group of degree n;
sgn () sign of a permutation T;
M, (F) algebra of all n x n matrices over F;
diag(aq,...,a,) diagonal matrix with entries aq, ..., a, on its diagonal;
diag[gi,...,9x] block-diagonal matrix with blocks g1, ..., gx on its diagonal;
perm(o) permutation matrix corresponding to o € Sym(n);
g’ transpose of a matrix g;
Det(H) {det(h) | h € H} for H < GL(V);
g-hi1 .. g-him
gh Kronecker product . . . € GLum(q)
g-hmi .. G -hmm
for g € GL,(q) and h € GL,,(q);
D(G) subgroup of all diagonal matrices of a matrix group G;
RT(G) subgroup of all upper-triangular matrices of a matrix group G;
P set of all primes except p;
(a,b) greatest common divisor of integers a and b.

It is convenient to view the symmetric group as a group of permutation matrices. We define
the wreath product of X < GL,(¢) and a group of permutation matrices Y < GL,,(q) as the
matrix group X 1Y < GL,,;,,(¢q) obtained by replacing the entries 1 and 0 in every matrix in YV
by arbitrary matrices in X and by zero (n X n) matrices respectively.

Let A be an (nm x nm) matrix. We can view A as the matrix

A oo A
Apt oo Apm
where the A;; are (n x n) matrices. The vector (A;1,. .., Aim) is the i-th (n x n)-row of A.

2.1. Classical forms and groups. Let us recall some definitions and results from [30, Chapter
1].

Let f be a non-degenerate unitary or symplectic form, so u is 2 or 1 respectively. If f is fixed,
then we write (v, w) instead of f(v, w) for convenience.

The pair (V,f) is a unitary (symplectic) space. Two unitary (symplectic) spaces (V1, 1)
and (Va, f2) are isometric if there exists an isomorphism of vector spaces ¢ : Vi — V4 such that

f1 (Uv u) = fg((i})g@, (U)SO)

for every v and w from V. Such ¢ is an isometry. A similarity of unitary (symplectic) spaces
(Vi,f1) and (Va, f2) is an isomorphism of vector spaces ¢ : Vi — V5 such that there exists A € Fgu
with

f1(v,u) = Ma((v)¢, (u)p) (2:2)

for every v and u from V7.

Let us fix f to be a non-degenerate unitary or symplectic form on V for the rest of the
section. Let W be a subspace of V. If the restriction fy of f to W is non-degenerate, then W is
a non-degenerate subspace of V. If fyy = 0, then W is a totally isotropic subspace of V.

Two subspaces U and W of V' are orthogonal if (u,w) =0 for all v € U and all w € W. We
write U_LW for the direct sum of orthogonal subspaces. The orthogonal complement W=+
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of Win V is
{veV|(v,u)=0forall u e W}.

Let I(V,f) and A(V,f) be the group of all f-isometries and all f-similarities from V' to itself
respectively. By definition, I(V,f) and A(V,f) are subgroups of GL(V), so X(V,f) := SL(V) N
I(V,f) is well-defined.

All non-degenerate unitary (respectively symplectic) spaces of the same dimension over Fgu
are isometric by the following lemmas. Here ¢;; is the Kronecker delta.

Lemma 2.1 ([30, Propositions 2.3.1 and 2.3.2]). Let f be unitary.

(1) The space (V,f) has an orthonormal basis.
(2) The space (V,£) has a basis

{{f1,...,fm,el,...,em}, if n=2m (2.3)

{fi,- o, fm,x,€1,...,em}, ifn=2m+1
where (e;,e;) = (fi, fj) = 0, (e, f;) = 0ij and (e;,x) = (fi,x) = 0 for all 1,7, and
(x,z) = 1.

Lemma 2.2 ([30, Proposition 2.4.1]). Let f be symplectic. The dimension n of V is even and
the space (V,f) has a basis

{f1, - fmrer, - em}s (2.4)
where 2m = n, (e;,¢e;) = (fi, f;) = 0 and (e;, fj) = 035 for all i, j.

Hence, for a non-degenerate unitary or symplectic space (V,f), the groups X(V, f), I(V,f) and
A(V,f) are also defined uniquely (up to conjugation in GL(V')) by dim V" and gq.
An f-semisimilarity is g € I'L,,(¢") such that there exist A € Fyu and o € Aut(F,u) satisfying

f(vg,ug) = M(v,u)® for all v,u € V. (2.5)

By [30, Lemma 2.1.2], « is determined uniquely by g, and a = o(g). We denote the group of
f-semisimilarities of V' by I'(V,f). It is easy to see that

AV, ) < T(V,£).

Definition 2.3. By [30, Lemma 2.1.2], if f is non-degenerate, then the A in (2.2) and (2.5) are
uniquely determined by g. Moreover, there exists a homomorphism 7 : A(V,f) - F qu satisfying

7(9) = A

We say that we work on the case U or S when f is unitary or symplectic respectively. Notice
that u = 2 in the case U and u = 1 otherwise. We summarise notation for the groups X, I, A
and I' in Table 2. For more details on classical groups and the equalities claimed in the table
see [30, §2.1].

Denote the identity (n x n) matrix by I,, and let Jo, be the matrix

(s ™)

For g € GL,,(¢") let g be the matrix obtained from ¢ by taking every entry to the g-th power
(so if u = 1, then g = g). We write g' for (g7)~! and X1 for {¢' | g € X}, where X C GL,(¢").

Fix a basis f = {v1,...,v,} of V and denote by fg the matrix whose (7, j) entry is f(v;,v;).
By fixing the basis, we identify I(V,f) and A(V,f) with the matrix groups

{9 € GLu(¢") | 9f55" =5} and {g € GL,(¢") | gf57" = M, A € Fyu} (2.6)
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TABLE 2. Notation for classical groups

case notation terminology
SU(V)
GU(V) unitary groups
ru(v)
1| Sp(V)
GSp(V) | symplectic groups
I'Sp(V)

U

M D] |~ M

respectively; we identify I'(V, f) with the subgroup I'(V,f) s < T'L(V, ) of f-semisimilarities.
Denote the group of matrices representing the isometries from I(V, f) with respect to a basis
§ such that f3 = ® by GU,(q, ®) (respectively Sp,, (¢, ®)) or GU,(q, 5) (respectively Sp,(q, 5)).
We write GU,,(q) (respectively Sp,,(¢)) instead of GU,(q, I,) (respectively Sp,,(q, J»)) for sim-
plicity; we use similar notation for X(V,f), A(V,f) and I'(V,f) in cases U and S. We also use
GL: (q) with € € {+, —} where GL;/ (¢) = GL,(q) and GL;, (q) = GU,(q).
Note the following observations and notation:
e In some literature A(V,f) for case S is denoted by CSp(V) and called the “conformal
symplectic group”.
e If 3 is as in Lemmas 2.1 and 2.2 for cases U and S respectively, then ¢5 € I'(V,f) and
L(V.£)g = A(V, )5 x (¢3).
e The group A(V,f) for case U is omitted in Table 2 since
AV, f) = I(V,f) - T

Therefore, A(V, )z x (¢g) and I(V,f)g x (¢5) (and their maximal solvable subgroups)
coincide modulo scalars. It is more convenient for us to work with I(V, ) % (¢3), so in
what follows we abuse notation by letting

LV, f) = I(V,f) x (¢g)

for an orthonormal basis 8 in case U.

o If X(V,f) < G < I'(V,f), then G is solvable if and only if ¥(V,f) is solvable since
AV, £)/E(V,f) and T'(V,f)/A(V,f) are abelian. Therefore, such G is solvable if and
only if either n =1 or X(V,f) is one of the following groups: SLa(q) = Sps(q) = SUz(q)
for ¢ € {2,3}, SU3(2). We often write “G is not solvable” where we ignore these groups.

We state a particular case of Witt’s Lemma, which we use later. For a proof see [1, §20].
Lemma 2.4. Assume that (V1,f1), (Va,f2) are isometric unitary (symplectic) spaces and W; is

a subspace of V; for i = 1,2. If there is an isometry g from (Wy,f1) to (Wa,fa), then g extends
to an isometry from (V1,f1) to (Va, f2).

2.2. Miscellaneous results. The following lemma is, in some sense, a generalisation of the
well known Clifford’s Theorem to semilinear groups.

Lemma 2.5. Let G be a subgroup of T'L,,(q) stabilising no non-zero proper subspaces of V. = Fy
and let M = G N GLy(q). Then M is completely reducible and stabilises a decomposition

V=V&..eoVy k>1

where each V; is Fy[M]-irreducible and G/M permutes the Vi cyclically. Moreover, every IFq-
irreducible M -invariant subspace of V' has dimension m = n/k.
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Proof. If M is irreducible, the lemma is trivial, so let us assume that M is reducible.

Let Vi be an irreducible F,[M]-submodule of V' and let m = dim V;. Since M < G, V¢ is an
irreducible F,[M]-submodule of V' of dimension m for all ¢ € G. Let ¢ € G be such that My is
a generator of G/M, so |p| =[S : M| =r. Let V; = Vip "L fori € {1,...,r},s0 V. =31 | V;
since there is no non-zero proper G-invariant subspaces of V.

We claim that

V:%@@Vn/m,

so M is completely reducible. The proof of this fact is similar to a proof of Clifford’s Theorem.
Let W; = 23:1 V;. If Wi = W; for some ¢, then W; is G-invariant. Indeed,

(Wi)<p:(V1<p+...+1/;g0):(V2+...+Vi+1)gWiH:Wi

and (W;)¢ = W; since dim(W;)p = dim Wj;. On the other hand, if W; 1 > W;, then W; N U4 is
a proper Fy[M]-submodule of Uj;1, so it must be zero. Hence Wi = W; @ Viyq. Since k =1,
Wit1 > W for 1 <i<n/m— 1. So, by induction,

V:Wn/mzvl@...@vn/m

and M is completely reducible. In particular, since each V; is F-irreducible, every F -irreducible
M-invariant subspace of V has dimension m. O

The next three lemmas provide information on I'(V,f) and its subgroups. Here f is unitary
or symplectic; by default, we assume that such a form f is non-degenerate.

Lemma 2.6 ([1, (5.5)]). Let H < T'(V,f), with f unitary or symplectic, be irreducible. Let L be a
non-scalar normal subgroup of H contained in GL(V'). Let {V; |1 <i <k} be the homogeneous
components of L on V' and assume k > 1. One of the following holds:

(1)

V= 1V
1<i<k

with V; non-degenerate and isometric to V; for each 1 <i < j < k;
(2)

V= 1 U
1<i<k/2

with U; = Va;_1®Va; where U; is non-degenerate and isometric to Uj for1 <1 < j < k/2,
and V; is totally isotropic for each 1 < i < k.

Lemma 2.7. Let f be a non-degenerate unitary or symplectic form on V. If B is a basis of V
such that fgﬁ = fg, then T'(V,£)5 = A(V,£)3 x (¢g).

Proof. Clearly, A(V,f)g N (¢g) = 1, so it suffices to show that ¢3 normalises A(V, )z and is a
semisimilarity of (V,f). Let g € A(V,f)3, so

gfsg" = Mg
for some A € F;. Therefore,

—T —T
9% 85(g%) =gt (g%) = (gfsg )? = (M5)? = AP,

and g% € A(V,f)s.
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Let v,u € V have coefficients (a1,...,a,) and (d1,...,d,) with respect to [ respectively.
Therefore,
,...,aﬁ)f@(éilp,...,ﬁp)T
d) R—
oS8T
= (v,u)?,

so ¢g is a semisimilarity. O

(vpp, upp) = (o
1

:(a?

Lemma 2.8. Recall that ¢ = pf. Let H < T'(V,f) with £ unitary or symplectic. There exists a
basis B such that £ is

In,
In,,
Ink+1
' or
Ing
In,,
I
! s (2.7)
Ink
Ing i1
Tng g
Iy
*Inl -
in cases U and S respectively. Moreover, if ¢ € Hg, then ¢ = (qﬁg)jg with
je{l,...,uf -1}
and

T(9m(g)t * . x %

0 (9w | * £ x s
Vi+1(9) 0 * *

g= . (2.8)

0 Yerilg) | k.
w(g)  x x
’ *

0 0 7(9)
where T(g) is as in Definition 2.3, 7; is a homomorphism from H to I'L,,(q¢") ifi < k, and from
H to T'Uy,(q) or I'Sp,,,(q), in cases U and S respectively, if i > k. Furthermore, ~v;(H) is an
irreducible subgroup of I'Ly,(¢%) for every i and v;(H N GL,(¢")) < GL,, (¢").

Proof. If H is an irreducible subgroup of I'L(V,Fqu), then by Lemmas 2.1 and 2.2 we can take
fs to be I,, or J, in cases U and S, and there is nothing to prove. So assume that there is a
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proper H-invariant subspace W of V' = Fyu on which H acts irreducibly. Therefore, W' is either
non-degenerate or totally isotropic. If V' has no totally isotropic H-invariant subspace, then V
is the direct sum of pairwise orthogonal H-invariant non-degenerate subspaces, so k = 0 and
the lemma follows.

Assume that W is totally isotropic. By Lemma 2.4 we can assume that V has a basis 8 as in
(2.3) such that

W = <€(n_n1+1), cee ,€n>
where ny = dim W. Let U be the subspace spanned by

5\{f(n7n1+1)7 R fTL7 6(n7n1+1)7 e 76n}'

Notice that U is non-degenerate. Let (2 := {v1,...,Un—2n,} be a basis of U such that fs is
orthonormal in case U and as in (2.4) in case S.
Let us define a basis

,81 = {f(n,nlJrl), ey fn, V1y...3Un—2n7; 6(n7n1+1), cee ,en}.
Hence
I,
fs, = i)
(_1)uIn1

with ® equal to I,,_2,, and J,_o,, in cases U and S respectively. Since H stabilises W, it also
stabilises W+ = (v1, ... s Un—2n15 €(n—n1+1)s - - - » €n)- By Lemma 2.7, if p € Hp,, then ¢ = (b8,)g
with g € GU,(q,fs,) or GSp, (g, fs,) respectively, so, by (2.6),

T(9)gw)T * =
9= 0 g x|,
0 0 gw
where ¢; is an (n — 2n;) X (n — 2np) matrix. If n = 2n,, then the lemma follows. We proceed
by induction on n — 2ny using the case n — 2ny = 0 as the base.
Assume that n > 2n;. Since gfs,g' = 7(9)fs,,

0 P71 =7(9)9.
Thus, g1 is a similarity of
((v1y. .y Un—2ny ), f1),
and
(¢8,)791 € T((v1, ..., vn—2m,), 1)
where f; is the restriction of f to (vq,...,v,—2p,). Notice that (¢g,)’ g1 is the restriction of ¢ to

W /W. So there exists a homomorphism ¢ from Hg, to I'U,_op, (¢) in case U and I'Sp,,_,,,, (q)
in case S defined by ¢ : g — (¢3,)?g1. Applying induction to ¢)(Hg, ), we obtain the lemma. [

The following lemma plays an important role in our proof of Theorems B1 and C1.

Lemma 2.9. Let I' € {I'U,(¢),I'Sp,,(¢)}. Let n > 2 and let q be such that I' is not solvable.
Let B be a basis of V' such that fg’e =fg and let ¢ = ¢5. If H <T' and H N GL,(¢") consists of

scalar matrices, then there exists b € T' N GLy,(q%) such that every element of H® has shape ¢'g
for some i € {1,...,uf} and g € Z(GL,(¢")).
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Proof. Let Z = Z(GLy,(q") NT). Notice that T'/Z is almost simple. Let Gy and G be the socle
of I'/Z and the group of inner-diagonal automorphisms of Gy respectively. Therefore, G =
(TNGLy,(g"))/Z. Without loss of generality, we may assume Z < H. Observe HNGL,(¢") = Z,
so H/Z is cyclic and consists of field automorphisms of Gy. Let ¢ € H be such that (Zy) = H/Z.
By Lemma 2.7,
I' = (I'NGLy(q")) % (9),

s0 ¢ € ¢'(I' N GLy,(¢")) for some i € {1,...,uf} and Zy € (Z¢")G.

By [24, (7-2)], Z¢ and Z¢' are conjugate in G, so there exists Zb € I'/Z N PGL,(¢") such
that (Zp)?® = Z¢! for some i € {1,...,uf}. Therefore, H® = Z(o*) = Z(¢') = (¢") Z. O

Further, we collect results on intersections of subgroups and base sizes.

Theorem 2.10 ([39]). If A and B are abelian subgroups of a finite group G, then there exists
x € G such that AN B* < F(G).

The following two results are the main result of [5, Section 3] and its corollary proved in [5,
Section 4].

Theorem 2.11. Let S be an irreducible mazimal solvable subgroup of GLy,(q) with n > 2, and
(n,q) is neither (2,2) nor (2,3). Then either bg(S - SL,(q)) = 2 or one of the following holds:

(1) n =2, ¢ > 3 is odd, S is the normaliser of a Singer cycle and bs(S - SLa(q)) = 3. If
q > 5, then there exists © € SLa(q) such that SN S* < D(GL2(q));

(2) n =2, ¢ >4 is even, S is the normaliser of a Singer cycle and bs(S - SLa(q)) = 3. In
this case there exists x € SLa(q) such that SN S* < RT(GL2(q));

B)n=2,¢=29,5 (up to conjugacy) is generated by all matrices with entries in Fs and
scalar matrices, so S = GLa(3) - Z(GL2(9)), and bs(S - SLa(9)) = 3. In this case there
exists © € SLa(9) such that SN ST < RT(GL2(9));

(4) n=2, g€ {5,7}, and S is an absolutely irreducible subgroup such that S/Z(GLa(q)) is
isomorphic to 22.8p(2). Here bg(S-SLa(q)) is 4 and 3 for q equal to 5 and 7 respectively;

(5) n=3, g =2, S is the normaliser of a Singer cycle and bg(S - SL3(2)) = 3;

(6) n =4, ¢ =3, S = GLa(3) ! Sym(2) and bs(S - SL4(3)) = 3. In this case there exists
x € SLy(3) such that SN ST < RT(GL4(3)).

Lemma 2.12. If k = 1, then either S N GL,(q) is an irreducible solvable subgroup of GLy(q)
or there exists x € SLy(q) such that SN S* N GL,(¢) < Z(GLy(q)).

Lemma 2.13. Let H be a mazimal solvable subgroup of PGLa(q). Then by (H - PSLa(q)) < 3
unless ¢ =5, H is the image of S in Theorem 2.11(4), and by (H - PSLa(5)) = 4.

Proof. Let S be the full preimage of G in GLa(q), so by (H - PSLa(q)) = bs(S - SL,(q)). If S is
irreducible, then the lemma follows from Theorem 2.11. If S is reducible, then, in suitable basis,
S is the group P; of upper-triangular matrices. Now the lemma follows by [14, Proposition
4.1]. O

We conclude the section with three technical lemmas.
Lemma 2.14. For every prime power q = p! there exists o € Fg2 such that o + % = 1.

Proof. If p # 2, then 27! € [y, so 27l (27 =2"142"1=1,
Let p = 2. Let y € Fy be a root of polynomial 29 + x + 1 = 0. Hence

Y =)l =(y+ 1) =y +1=y+1+1=y,
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soy € Fp. U

Lemma 2.15. Let n be a generator of F(’;Q and let = ni=1. If -1 = 1 for some j €

{0,1,...,2f — 1}, then j = 0.

Proof. Notice that |0] = p/ +1. Let j € {1,...,2f} be minimal such that p/ 4 1 divides p’ — 1.

Hence p/ + 1 divides (p>/ — 1,p7 — 1) = p®/)) — 1. Therefore, (2f,7) > f, so j = 2f. O
The following technical lemma is proved in [5, Section 3].

Lemma 2.16. Let H < XY, where X < GLy,(¢), Y < Sym(k). Let A(k) = (yij) € GLk(q)
be the inverse of the Jordan block Jy 1 and let x; for i = 1,...,k be arbitrary elements of X.
Define v € GLy,1(q) to be

Y111 Y121 ... Y1kx1

. Y21T2 Y222 ... Y2,T2
diag(z1, ..., xx)(Im ® A(k)) = : : ,

Y1Tk Yk2Tk  --- YkkTk

Let h = diag[D1,...,Dg|-s € H, where D; € X and s €Y, so h is obtained from the permutation
matriz s by replacing 1 in the j-th row by the (m x m) matriz D; for j =1,...,k and replacing
each zero by an (m X m) zero matriz. If h* € H, then s is trivial and D;Cj = D;Cfll for
j=1,...,k—1.

2.3. Fixed point ratios and elements of prime order.

Definition 2.17. If a group G acts on a set , then Cq(z) is the set of points in Q fixed
by x € G. If G and Q are finite, then the fixed point ratio of x, denoted by fpr(z), is the
proportion of points in {2 fixed by z, i.e. fpr(z) = |Cq(x)|/|€|.

If G acts transitively on a set 2 and H is a point stabiliser, then it is easy to see that

“NH

In [8, 9, 10, 11] Burness studies fixed point ratios in classical groups. Recall some observations
from [8]. Let a group G act faithfully on the set Q of right cosets of a subgroup H of G. Let
Q(G, ¢) be the probability that a randomly chosen c-tuple of points in €2 is not a base for G, so
G admits a base of size ¢ if and only if Q(G,c) < 1. Of course, a c-tuple is not a base if and
only if it is fixed by = € G of prime order, and the probability that a random c-tuple is fixed
by z is equal to fpr(z)¢. Let & be the set of elements of prime order in G, and let x1, ...,z
be representatives for the GG-classes of elements in &. Since fixed point ratios are constant on
conjugacy classes (see (2.9)),

k

Q(G,c) < Z fpr(z)° = Z 2,8 - fpr(z)° =: Q(G, ¢). (2.10)
e i=1

Lemma 2.18 ([12, Lemma 2.1]). Let G act faithfully and transitively on Q and let H be a point

stabiliser. If 1, ...z}, represent distinct G-classes such that 3% |#% N H| < A and |2&| > B

foralli e {1,...,k}, then

> laf] - fpr(wi)© < B- (A/B)".
i=1
for all c € N.
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If there exists £ € R such that fpr(z) < |#¢|~¢ for every z € &2, then

k
QG e) <) laf '

i=1
Definition 2.19. Let % be the set of conjugacy classes of prime order elements in G. For t € R,
na(t) ==Y C|™"
Ce%
If Z(G) = 1, then there exists T € R such that ng(Tg) = 1.

Lemma 2.20. If G acts faithfully and transitively on Q and fpr(z) < |2%|=¢ for allx € & and
Ta < c€—1, then b(G) < c.

Proof. We follow the proof of [12, Proposition 2.1]. Let z1,...,x; be representatives of the
G-classes of prime order elements in G. By (2.10),

k
Q(G,¢) <Y i) - fpr(wi) < m(c€ — 1)

i=1
The result follows since ng(t) < 1 for all ¢t > T¢. O

We fix the following notation for the rest of the section. Let G be an adjoint simple algebraic
group of type A,_1 or C,, /5 over the algebraic closure of F,. Let G, = {g € G | g¢° = g} where

o is a Frobenius morphism of G. Let G be such that Gy = OP' (G,)’ is a finite simple group.
Here OPI(G) is the subgroup of a finite group G generated by all p-elements of G. Therefore,
G, = PGL:(q) and G = PSLE (q) for type A,_1; also G, = PGSp,,(q) and Gy = PSp,,(q)’ for
type Cy, 2. Let G be a finite almost simple group with socle Gp.

As proved in [12, Proposition 2.2], if n > 6, then T exists and Tz < 1/3. Thus, if for such G

fpr(z) < |2€] 3 (2.11)

for all z € &2, then £ > 4/(3¢) and ¢ — 1 > 1/3 > Tz and G has a base of size c.
Therefore, Lemma 2.20 allows us to estimate the base size by calculating bounds for || and
|2% N H| for elements z of prime order.

Definition 2.21. Let x € PGL(V) = PGL,(q). Let F be the algebraic closure of F,, and let
V =F®YV. Let  be the preimage of z in GL,(q). Define
vy(2) == min{dim[V,\2] : A € F}.

Here [V, g] for a vector space V and g € GL(V) is the commutator in V' x GL(V)). Therefore,
vy 7(z) is the minimal codimension of an eigenspace of & on V. Sometimes we denote this
number by v(z) and vy, 5 ().

Lemma 2.22 ([9, Lemma 3.11]). Let x € PGL;,(q) have prime order r. One of the following
holds:

(1) = lifts to € GL:,(q) of order r such that |:L;PGL$L(‘1)| = |zCLa (D))
(2) r divides both q — € and n, and x is PGL,(F)-conjugate to the image of

diag[Ly, /r, wlyps - -, w" L,

where w € F is a primitive r-th root of unity.
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Remark 2.23. Lemma 3.11 from [9] is formulated for all classical groups, but only for r # 2.
It is easy to see from its proof that the condition r # 2 is necessary only for orthogonal and
symplectic cases; if x € PGL,(¢) then the statement is true for arbitrary prime |z|.

Lemma 2.24. Let € G, have prime order.
Go

(1) If x is semisimple, then 2 =z B
(2) If x is unipotent and Gy = PSLE (q), then |2%7| < @in{n,p}\xGOL
(3) If z is unipotent, p # 2 and Go = PSp,,(q), then |2C7| < 2|2C0|.

Proof. See [25, 4.2.2(j)] for the proof of (1) and [9, Lemma 3.20] for (2) and (3). O
Notice that if p = 2, (n, q) # (4,2) and G, is symplectic, then G, = Gj.

Lemma 2.25. Let © € G have prime order r and s := v(x).
(1) In case Go = PSL; (q):

as/(n—s) as/(n—s)
|:CG| > % (ﬁ) qt = % (qil) qn2/2 for s > n/2; (2 12)
a .
() > > & () g fornja<s<n/2,
where t = min{r,n} and a = (1/2)(1 — el).
(2) In case Gy = PSp,(q)':
1
6> 1 (qj_l) mas(g"n=5) g(ns/2)) (2.13)
Proof. The statement follows by Lemma 2.24 and [9, Propositions 3.22 and 3.36, Lemmas 3.34
and 3.38]. O

3. INTERSECTION OF CONJUGATE IRREDUCIBLE SOLVABLE SUBGROUPS

Recall from the introduction that bg(G) is the minimal number such that there exist
1y Thg(@) € G with S** N...N8%s@ = Sq

where Sg = NgeeSY. Let G be GU,(q) or GSp,,(¢q) in cases U and S respectively and let S be an
irreducible maximal solvable subgroup of G. The goal of this section is to obtain upper bounds
for bg(S - (SL,(¢")NG)). These bounds play an important role in the proof of Theorems B1 and
C1 in Section 4. While, with some exceptions, bs(S- (SL,(¢")NG)) < 4 follows by [12, Theorem
1.1}, it is not sufficient for our purposes. In this section we prove that bg(S - (SL,(¢")NG)) < 3
in cases U and S with a short list of exceptions.

Maximal solvable subgroups of GSp,,(¢) were recently classified in [31]. For our purpose, we
do not need the classification in full details, but we make use of it when n is small. In particular,
[31, Table 14] lists, up to conjugacy, irreducible maximal solvable subgroups of GSp, (q) for
n € {2,4,6}.

3.1. Primitive and quasi-primitive subgroups. We start our study with a special case when
S is quasi-primitive solvable subgroup of G. In the next section we use these results to obtain
bounds for bg(S - (SLy(¢") N G)) where S is irreducible.

Definition 3.1. Let H < GL(V'). An irreducible F,[H]-module V is quasi-primitive if it is a
homogeneous F,[N]-module for all N < H. A subgroup H of GL(V) is quasi-primitive if V' is
a quasi-primitive F,[H]-module.
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In the linear case studied in [5], to extend our results from a primitive subgroup to an ir-
reducible subgroup, we use [37, §18, Theorem 5] which asserts that an imprimitive irreducible
solvable subgroup of GL,,(¢) lies in a wreath product of a primitive solvable subgroup of smaller
degree with a solvable permutation group. In cases U and S, Lemma 2.6 does not guarantee
that an irreducible subgroup of G lies in the wreath product of a primitive subgroup of a general
unitary or symplectic group of smaller degree with a subgroup of a symmetric group. However,
it gives us a decomposition of V' which allows us to use induction when S is not quasi-primitive.

To prove results about bg(SL,(¢") N G), we need information about quasi-primitive solvable
groups such as upper bounds for |S| and lower bound for v(z) (the codimension of a largest
eigenspace of x, see Definition 2.21), where z is a prime order element of the image of S in
PGL,,(¢"). This information is needed to apply the probabilistic method described in Section
2.3. A primitive subgroup of GL,(q) is quasi-primitive by Clifford’s Theorem. If S < GL,(q) is
solvable and quasi-primitive, then every normal abelian subgroup of S is cyclic by [33, Lemma
0.5]. Such groups are studied in [33]; we collect the main results in the following lemma.

Lemma 3.2 ([33, Corollary 1.10]). Suppose S < GL,(q) is nontrivial solvable and every normal
abelian subgroup of S is cyclic. Let F' = F(S) be the Fitting subgroup of S and let Z be the socle
of the cyclic group Z(F'). Set C = Cs(Z). Then there exist normal subgroups E and T of S
satisfying the following:

(1) F=ET, Z=ENT and T = Cp(E);

(2) E/Z =FE1/Z x ... x Ey/Z for chief factors E;/Z of G with E; < Cg(Ej) fori # j;

(3) For each i, Z(E;) = Z, |E;/Z| = p?ki for a prime p; and an integer k;, and E; =
Oy (Z) - Fi for an extra-special group F; = Op,(E;) 1S of order p2hitt

(4) There exists U < T of index at most 2 with U cyclic, U < S and Cr(U) = U;

(5) T=Cg(FE) and F =Cc(E/Z);

(6) If C; is the centraliser of E;/Z in C, then C/C; is isomorphic to a subgroup of Spyy, (pi)-

Remark 3.3. In the notation of Lemma 3.2, let e be a positive integer such that |E/Z| = €2, so
e= Hle pf’ Since E; has the subgroup F; of order pfkﬁ'l and |E;/Z| = pfk", for each p; there
must exist an element of order p; in Z (and in U, since Z < U). In other words, each p; divides

U.

Theorem 3.4 ([33, Theorem 3.5]). If S is a completely reducible solvable subgroup of GL,(q),
then |S| < ¢”"/*/2.8.

First we obtain results about cyclic subgroups of G € {GU,(q), GSp,,(¢)}. To do so, in
particular, we use the notion of a Singer cycle: a cyclic subgroup of GL,(q) of order ¢" — 1.
We use notation and results about Singer cycles from [5, Section 2]. The following result is well
known and is easy to prove using Clifford’s Theorem and linear algebra.

Lemma 3.5. An irreducible cyclic subgroup of GL,(q) is contained in some Singer cycle. A
proper subgroup C' of a Singer cycle T < GLy(q) is irreducible if and only if |C| does not divide
q" — 1 for every proper divisor r of n.

Lemma 3.6. Let C be a non-scalar cyclic subgroup of G € {Sp,,(¢),GU,(q)} such that V is
Fqu[C]-homogeneous. Recall that u = 2 if G = GU,(q) and u = 1 otherwise. If W CV is a
F,u[C]-irreducible C-invariant subspace with diim W = m, then |C| divides (¢%)™/?+1. Moreover,
m is even if G = Sp,,(q) and m is odd if G = GUy(q).
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Proof. Since W is Fgu[C]-irreducible, it is either non-degenerate or totally isotropic. If W is
non-degenerate, then the lemma follows by [28, Satz 4 and 5].

Let W be totally isotropic. We consider here the proof for G = Sp,,(¢), the proof for GU,(q)
is analogous. By [1, (5.2)], we can assume that there exist Wi, Wa C V such that W7 = W and
W3 is totally isotropic and Fgu[C]-irreducible, and W; & W5 is non-degenerate.

Let g € Sp(W1 @ W3) be the restriction of a generator of C to W @ Ws. Since V' is Fu[C]-
homogeneous, there exist bases ; of W; for i = 1,2 (let 8 = 1 U fB2) such that

_ (91 O _ 0 A
98 = <0 91) and (ﬂwl@w2>5 - <_AT O)

for some g1, A € GL,,(q). Here (g1) < GL,,(q) is irreducible. Since g is an isometry of W7 & W,
g,@(f‘wl@WQ )6(95)T = (f|wl@w2 )57

SO glAng = A and gf‘ = (97 1)T. Therefore, the set of eigenvalues of g1 is closed under taking
inverses. Moreover, the multiplicity of the eigenvalue p is equal to the multiplicity of the
eigenvalue p~! for every u € IHTQ*.

By [18, Lemma 1.3], g; is conjugate in GL,,(F,) to

diag(\, A%, ..., A" "), where A" "1 =1.

Clearly, |A| = |g1| = |C|. Let r be the minimal natural number such that \X¥" = \~L. If » = 0,
so A = A"! = 41, then g; = A, and C is a group of scalars, since it is homogeneous. Assume
r > 0,50 M H =1 and (¢" + 1) divides (¢™ — 1). Since (g;) is irreducible, |g;| does not
divide ¢! — 1 for every proper divisor I of m. Notice that |g;| divides (¢°" — 1), so |g1| divides
(¢ —1,¢" —1) = ¢(?»™) — 1 which is divisible by ¢" + 1. Therefore, (2r,m) > r and 2r = m.
Hence m is even and |C| divides ¢"™/2 + 1. O

m—

Corollary 3.7. Let C be a non-scalar cyclic subgroup of GSp,,(q) such that V is F4[C]-homogeneous.
If W C V is a Fy[Cl-irreducible submodule of dimension m, then m is even and |C| divides

(@™ +1)(g 1)
Proof. Let C' = (c) and 7(c) = A € F; where 7 is as in Definition 2.3. So
(uc,ve) = A(u,v) for all u,v € V.
Notice that
(ucM vy = AP (u, 0) = (u, v) for all u,v € V.

Therefore, ¢ e Sp,,(q). Let ¢; be the restriction of ¢ to W, so ¢ = diag[cy, ..., c1] in some basis
of V since V' is F,[C]-homogeneous.

We claim that (cll)‘|> is an irreducible subgroup of GL(W). Assume the opposite, so there

exists a (cll)‘|>—invariant subspace of W of dimension r dividing m. Hence 7 is even and |c1|/|A|
divides (¢"/? + 1) by Lemma 3.6 since ¢ € Sp,,(¢). Also || divides (¢ — 1) and (¢ — 1) divides
("% = 1), so |er| = |A| - || divides ¢" — 1. By Lemma 3.5, {¢;) is a reducible subgroup of
GL(W) which is a contradiction.

Thus, W is <c|1)‘|)—irreducible and |c| divides (¢"/24 1) by Lemma 3.6, so |C| divides (¢™/2+
(g —1). O

Now we obtain bounds for |S| and v(z). We adopt the notation of Lemma 3.2 in the following
statement.
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Lemma 3.8. Let G € {GSp,,(¢), GU,(q)}. Let S be a quasi-primitive solvable subgroup of G.
Let W be an m-dimensional irreducible U-submodule of V and let e be a positive integer such
that €2 = |E/Z|. The following hold:

1) em divides n;

2) |S| < min{|U[2e/2 /2, |U|me'?/?};

3) ife=1, thenn =m and S is a subgroup of the normaliser of a Singer cycle of GLy,(¢");
(4) if m =1 then |S| < |Z(G)|e'3/2.

Proof. Since EU < S, (1) follows by Clifford’s Theorem and [33, Corollary 2.6].
It is easy to see that
S| =1S/C|-[T|-|C/F|-|F/T].

By the proof of [33, Corollary 3.7], |S/C|-|T| < |U|?, and |C/F| < €%/?/2 and |F/T| = €2, which
gives us the first bound of (2). To obtain the second bound, we claim that |S/C| < m. Indeed,
the linear span Fgu[Z] is the field extension K of the field of scalar matrices A = Fgu - I, of
degree m; = dim Wy, where W; < V is an irreducible Fju[Z]-module, so m; divides n since Z
is homogeneous, and m; < m since Z < U. Consider the map

f:S = Gal(K/A), g oy,
where 0, : K — K, 299 = 29 for € K. Since ker(f) = C,
S/C =Im(f) < Gal(K/A),

so |S/C| divides m; and the second bound follows.

If e =1, then F =T and S is a subgroup of the normaliser of a Singer cycle of GL,,(¢") by
[33, Corollary 2.3], so U is self-centralising. By [33, Lemma 2.2] U is irreducible, so m = n and
(3) follows.

If m =1, then U < Z(G) since U is homogeneous, so |S/C| = 1 which implies (4). O

Lemma 3.9. Let S be a quasi-primitive solvable subgroup of GL,(q) and let H be the image of
S under the natural homomorphism from GLy(q) to PGL,(q). If x € H has prime order, then
v(z) > n/4.

Proof. The proof follows the beginning of the proof of [23, Proposition 4]. Let & be a preimage of
x in GL,(q), so & = pg, where p € Z(GL,,(q)) and g € S\{1}. Observe that v(x) = v(z) = v(g),
so it suffices to prove that v(g) > n/4 for all nontrivial g € S.

If g € U, then, since U is abelian and V is U-homogeneous, g is conjugate in GL,(F,) to

diag(A, A%, .. AT AL M) A e Ry,

by [18, Lemma 1.3]. Here mq is the smallest possible integer such that A\?"' = X. Therefore,
v(g) =n —n/my > n/2. Moreover, if z € U is nontrivial, then Cy (z) = {0}.
Let A € F,". If g € S\C, then

mq—1

[Ag, 2] = lg,2] € Z\{1}
for some z € Z < U. Notice
Ov((Ag)™1) N Cy (27" Xgz) € Cr([Ag, 2]) = {0}
and dim(Cy ((Ag)~1)) = dim(Cy((Ag)?)), so dim(Cy((Ag))) < n/2 for every A € F, . Hence

v(g) > n/2.
If g € F\T, then, by (1) and (5) of Lemma 3.2, there exists h € E such that

[Ag, h] = [g,h] € Z\{1}
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and v(g) > n/2 as above.

If g € T\U, then [A\g,u] = [g,u] € U\{1} for some u € U by (4) of Lemma 3.2, so v(g) > n/2
as above.

If g € C\F, then [Ag,h] € E\Z C F\T for some h € E by (5) of Lemma 3.2. Therefore,

dim(Cy ([Ag, h])) < n/2 and dim(Cy(A\g)) < 3n/4
for every A € F,", so v(g) > n/4. O

Before the next lemma, we remind the reader the following definitions. A subgroup of GL,(q)
is absolutely irreducible if it is irreducible as a subgroup of GL,,(F,), where F, is the algebraic
closure of F,. For a prime r, a finite r-group R is of symplectic-type if every characteristic
abelian subgroup of R is cyclic. Symplectic-type groups are closely related to extra-special
groups, see [30, §4.6] and [36, §2.4] for a summary and details. Normalisers of absolutely
irreducible symplectic-type subgroups in classical groups are often maximal subgroups. Such
maximal subgroups form Aschbacher’s class Cg. If such a normaliser is not a maximal subgroup,
then it lies in a maximal subgroup from the class C5 (which contains the normalisers of classical
subgroups over a subfield of Fgu, see [30, §4.5, 4.6] for details). We use the notation of Lemma
3.2 in the following lemma.

Lemma 3.10. Let S < G € {GU,(q),GSp,(q)} be a quasi-primitive mazimal solvable subgroup.
Recall that ¢ = p!. If e = n = rl for some integer | and prime r, then the following hold:
(1) T = Z(F) = Cs(B) = Z(C);
(2) S=81-Z(G) where Sy = SN GL,(p'), t divides f, and Sy lies in the normaliser M in
GL,(p?) of an absolutely irreducible symplectic-type subgroup of GL,(p?).

Proof. By [33, Lemma 2.10], (1) follows. Let W < V be an irreducible Fgu[F]-submodule.
By Theorem 3.2, F = O,(Z) - F} where F is extra-special of order 72*! so W is a faithful
irreducible Fgu[Fy]-module. Therefore, by [30, Proposition 4.6.3], dimW = 7!, and F} is an

absolutely irreducible subgroup of G N GLy,(p") where F: is the smallest field over which such
a representation of F} can be realised. In particular, ¢ is the smallest positive integer for which
p' = 1 mod |Z(F})|. Moreover, by [36, Corollary 2.4.12], |Z(F})| is either r or 4. By [36,
Theorem 2.4.12], S = S - Z(@) where 51 < NGLn(pt)<F1) =M. O

Finally, we establish the bounds for bg.

Lemma 3.11.

(1) Let n > 3 and (n,q) # (3,2). If S is a quasi-primitive maximal solvable subgroup of
GU,(q), then
bs(S-SU,(q)) < 3.

(2) Letn > 6. If S is a quasi-primitive mazimal solvable subgroup of GSp,,(q), then

bs(S - Sp,(g)) < 3.

Proof. Let G'be S-SU,(q) and S-Sp,,(q), for cases (1) and (2) respectively. Let G = G/Z(G) <
PGL,(¢") and let H be S/Z(G) < G. Obviously,

bs(G) = by (G).
If n > 6 and for all z € G of prime order
|IG N H‘ < ’xG|(3074)/(3c)7
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then by (G) < ¢ by Lemma 2.9 and (2.11). Therefore, if n > 6, then it suffices to show this
inequality with ¢ = 3.

Let s := v(z). We use bounds (2.12) and (2.13) for |2%|. In most cases the bound |2“NH| < |H|
is sufficient.

Part (1) of the lemma follows from (2.11), Lemma 3.9, bounds (2.12), Lemma 3.6 and (2) of
Lemma 3.8 for all ¢ and for n > 10. These bounds do not suffice when 6 < n < 9 and ¢ = 2; here
the lemma is verified by computation. For n < 5, with a finite number of exceptions verified by
computation, part (2) follows by [12, Tables 2 and 3] where bounds for base sizes for primitive
actions of classical groups with n < 5 are listed. For n # 4, an upper bound for the base size
is listed for all (up to conjugacy) irreducible maximal subgroups H. If n = 4, and the maximal
subgroup H is of type Sp,(q), then the corresponding action is equivalent to a subspace action
of an orthogonal group with socle P2 (¢). In this case, in the notation of Lemma 3.8, m = 1 by
Lemma 3.6 and e = 4 by [33, Corollary 2.6], so S is as in Lemma 3.10. So S lies in the maximal
subgroup of H of type 24.0; (2) and bs(S - SU4(q)) < 3 by [12, Table 3].

Part (2) of the lemma follows from (2.11), Lemma 3.9, bounds (2.12), Corollary 3.7 and (2)
of Lemma 3.8 for all ¢ and for n > 16. The list of cases when these bounds are not sufficient for
6 < n < 14 is finite. Using Remark 3.3 we reduce this list to 6 < n < 8 and ¢ € {2,3,5,7}; here
the lemma is verified by computation. O

Theorem 3.12. Let G be GU,(q) or GSp,,(¢q) in cases U and S respectively. Let S be a quasi-
primitive mazximal solvable subgroup of G. In each case let (n,q) be such that G is not solvable.
Then either bs(S - (SLy(¢") NG)) < 3, or G € {GU2(5), GSpy(5)}, S is a completely irreducible
subgroup with S/Z(G) isomorphic to 22.5py(2) and bs(S - SLa(5)) = 4.

Proof. Lemma 3.11 gives us sufficient results for n > 3 in case U and for n > 6 in case S. If n = 2,
then GSp,,(q) = GLa(¢) and PGU,(q) = PGL2(q), so, by Lemma 2.13, bg(S- (SL,(¢")NG)) < 3

unless ¢ = 5. For ¢ = 5, in both cases U and S, the lemma is verified by computations.

Let S be a quasi-primitive maximal solvable subgroup of GSp,(¢) and G=S5- Sp4(q). We use
notation from Lemmas 3.2 and 3.8. The proof splits into several cases depending on values of
e, m, and q.

Casee=4. If e = 4, then m = 1, ¢ is odd by Remark 3.3 and S is as in Lemma 3.10.
In particular, S lies in a maximal subgroup of G from Cs or Cs. By [12, Tables 2 and 3],
bs(S - Spy(q)) < 3 for ¢ > 3; for ¢ = 3 the statement bg(S - Sps(q)) < 3 is established by
computation.

Let G and H be the image of G and S in PGSp,(¢) under the natural homomorphism
respectively. In the remaining cases we claim that Q(G,3) < 1 in (2.10).

Case e = 1. In this case, m = 4 and S lies in the normaliser N = T x (p) of a Singer cycle
T of GL4(q) by Lemma 3.8(3). Here || = 4 and t¥ = ¢4 for t € T by [27, Chapter II, §7].
In particular, S N 7T is irreducible and |S N T| divides (¢*> + 1)(¢ — 1) by Corollary 3.7. So
|H| < 4(¢* + 1). By the proof of Lemma 3.9, v(x) > n/2 = 2 for all elements = € H of prime
order.

All elements of of H having odd prime order lie in the image of SN T in H, so there are at
most A; := (¢? + 1) such elements. By [9, Lemma 3.34 and Proposition 3.36],

|29 > (1/2)¢* =: B,

for semisimple = € H of prime order.
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If ¢ is even, then, since N = T X (p) and (p) is a Sylow 2-subgroup of N, all elements of
H of order 2 are conjugate in H, so there are at most ¢> + 1 such elements. Assume that g
is odd. Let us compute the number of elements (Ap?) € S < N such that (Ap?)? is scalar, so
(A2 € Z(G) = Z(GSp,(q)). Notice that |Z(GSp,,(q))| = |Z(GLy(q))| = ¢ — 1. Since

()? = NG € 2(G),
there are two possibilities: ¢ = 4 and i = 2. If i = 4, then A2 € Z(G), so there are 2(q — 1)
such elements in T'. In the second case A" t! € Z(@), so there are (¢2 +1)(q— 1) such elements.
Therefore, there are at most ((¢> + 1) +2) — 1 = ¢ + 2 =: Ay elements of order two in H. By
Lemma 2.25, |2%] > (1/8)¢°/(q + 1) := Bo.
Hence, by Lemma 2.18, Q(G, 3) < A3/B?+ A3/ B3 which is less than 1 for ¢ > 9, so by (G) > 3.

A~

If ¢ <9, then bg(G) < 3 is established by computation.

Case e = 2. Note that ¢ is odd by Remark 3.3. First, let us show that we can assume that S
is primitive. Indeed, if S is imprimitive, then there exists a system of imprimitivity

V=Vie...eV:.

Let k be the maximum possible for S, so k € {2,4}. By carefully examining [31, Table 14] (where,
as mentioned in the beginning of the section, listed irreducible maximal solvable subgroups of
GSp,,(q) for small n) and using [31, Theorem 24.9], we obtain that £ = 2 and the V; are totally
isotropic, as otherwise S it is metrically imprimitive and not quasi-primitive. Hence S lies in a
maximal group of GSp,(q) of type GLy(q).2 (see [30, Table 4.2.A]) and bs(G) < 3 by [12, Table
2]. So further we assume that S is primitive.
Since
S| =1S/C|-[T/U|-|U|-|C/F|-|F/T],

by (6) of Lemma 3.2, |S| divides 2 -2 - (¢> — 1) - |Sp(2)| - €2. Therefore, |H| divides 96(q + 1).
Let « € H have prime order r. Let ()1, Q2 and Q3 be

Z fpr(z)3, Z fpr(z)3 and Z fpr(z)?
zeP;rg{2,3} rEPr=2 reEP;r=3

respectively, so Q(G,3) < Q1 + Q2 + Q3. We find upper bounds for Q;, i € {1,2,3}.

If r # 2,3 then r divides ¢ + 1 and, since r does not divide n, by Lemma 2.22 z has a
preimage & € U of order r. Hence, by the proof of Lemma 3.9, v(z) > 2. Since U is a normal
cyclic subgroup of order dividing g + 1, the number of elements of H of prime power not equal
to 2 or 3 is at most Ay := ¢. By [9, Proposition 3.36], || > (1/2)¢* =: B;. By Lemma 2.18

Q1 < A}/BY = 1/(4¢%).

We use results summarised in the following remark to estimate |% N H| for r € {2,3}.

Remark 3.13. Let r € {2,3}. For L < GL,(q) let
cr(L) =g e L:g" € Z(GLn(q))}-

Notice that [z¢ N H| < ¢.(S)/|Z(Sp4(q))| for = € S/Z(Sp4(q)) of prime order. Here we compute
¢r(L) for some specific groups.

By [37, §21, Theorem 6] and [36, Chapter 5], a primitive maximal solvable subgroup of GLa(q)
is conjugate to either the normaliser of a Singer cycle or to a certain subgroup of order 24(q—1).
We follow [36, Chapter 5] and denote the normaliser of a Singer cycle of GLy(gq) by My and the
primitive maximal solvable subgroup of order 24(¢ — 1) by M3 and M, for ¢ = 3 mod 4 and
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¢ = 1 mod 4 respectively. Explicit generating sets of M3 and My are listed in [36, §5.2]. It is
routine to check that M3 and My contain Z(GLa(q)), ca(M;) = 10(g—1) and c3(M;) = 9(¢—1) for
both i = 3, 4. Notice that c3(Mz) = (3,q+1)-(¢— 1), since all g € My such that g3 € Z(GLz(q))
lie in the Singer cycle which is a normal subgroup of Ms. Using the same method as for the case
m =4 (when S lies in the normaliser of a Singer cycle), we obtain ca(M2) = (¢+3)(¢ — 1).

Since S is primitive, it lies in a primitive maximal solvable subgroup M of GL,(q). Since
e =2, M = Mg (see [36, §8.1] for the definition). By [36, Proposition 8.2.1],

M = My @ M;

where M; is defined in Remark 3.13 for i = 2,3,4. Recall also the values of ¢, (M;) for r =
2,3 from Remark 3.13. Now, since My ® Iy and Iy ® M; contain Z(GL4(q)), we deduce that
co(M)=(qg+3)-10(¢g—1) and c5(M) = (3,¢+ 1) -9(¢ — 1). So there are 9(3,q + 1) elements
g of M/Z(GLy4(q)) such that ¢> = 1 and, therefore, A3 := 9(3,q + 1) — 1 elements of order 3.
Similarly, there are As := 10(¢ + 3) — 1 elements of order 2 in M/Z(GL4(q)).

If 7 = 2, then  is semisimple and |2¥| > By := (1/4)¢* by [9, Table 3.8]. So, by Lemma 2.18,

(10(g +3) —1)°
((1/4)q*)?

If 7 = 2, then |2¥| > B3 := (1/8)(¢q/(¢ + 1))¢* by Lemma 2.25. So, by Lemma 2.18,

Q2 < A3/B3 =

(9B.q+1) —1)°
((1/8)(q/(q+1))g*)*

Computations show that Q(G,3) < Q1+Q2+Q3 < 1for g > 11.If ¢ < 11, then bs(Sp4(q)) < 3
is established by computation. (I

Qs < A3/B3 =

3.2. Imprimitive irreducible subgroups. We commence by obtaining a result about the
group of monomial matrices in GU,(g). Recall that by default we assume that GU,(q) is
GU,(q, I,), the general unitary group with respect to an orthonormal basis of V. We combine
this result with those of the previous section to obtain an upper bound to bs(S-(SLy(¢")NG)) for
those maximal solvable subgroups S of G € {GU,(q), GSp,,(¢)} which are not quasi-primitive.

For a € Fyu let B(n,a) and C(n,a) be the following n x n matrices:

a a 0 0 0 0
a® —a’® a 0 0 0
ad —a —a? a 0
B(n,a) = ;
a2 _g4(n—2) a(n=3) ) a 0
aln=1)  _,4(n-1) a(n—2) —a® —a a
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a?+1 a 0 0 . 0

a2+1 (a+a™t) a=! 0 0

Cln.a) = a2+1 (a+al) (a +.a_1) C‘L e 0
a2+1 (a+at) (a+a ) (a+al) D"

o ) 0 ) 4

Here n > 3 for B(n,a) and C(n,a). Denote by B’(n,a) the matrix B(n,a)w, where 7 is the
permutation matrix for the permutation (1,n)(2,n—1)...([n/2],[n/2+3/2]). If n is even, then
a=aand § =+va2+1in C(n,a). If n is odd, then « =1 and § = a~'va? + 1.
Lemma 3.14. Let M, (q) be the group of all monomial matrices in GL,(q) and MU,(q) :=
Mo (¢%) N GUx(q).

(1) If q is odd and a € F 2 satisfies a?tl =271 then

MU (q) N MU,(q) " 0 MU, (q)” ") < Z(GUa(g))
forn > 3.
(2) If q is even and 1 # a € Fy (so ¢ > 2), then
MU, (q) N MUy (¢)°™) < Z(GUa(q))

for n > 3.
(3) If g > 4, then byru,(q)(GU2(q)) < 3.
(4) If n =4, then byiy, (2)(GU,(2)) = 4. If n > 4, then byy, 2)(GUn(2)) < 3.

Proof. (1) Since ¢ is odd, there always exists a € Fg2 such that a?t!l = 271 Indeed, let n be

a generator of FZQ and 6 = n?t! so @ is a generator of Fg. Thus, 6% = 271 for some integer k.
Therefore, (n*)9*! = 271, Tt is routine to check that B(n,a) and B'(n,a) lie in GU,(q) for such
a.
Consider g € MU,,(q) N MU, (¢)5™% so
g = diag(g1,- .-, gn)r,
where r € Sym(n) and g; € Fp,.

Let B = {v1,...,v,} be the orthonormal basis of V' such that GU,(q) = GU,(q,fz). Since g
is monomial, it stabilises the decomposition

(V1) D ... D (vy).
Since g € GU,(q)B(™%, it stabilises the decomposition
((v1)B(n,a)) & ...® {((vy)B(n,a)).
We write w; for (v;)B(n,a). Notice that

avy + avs if i =1;
w; =} a'vy — a'vg — a vz ... — a®v; + avip ifl<i<ng
a" oy —a" vy —a" 2., — dPv,_1 —av, if i =n.

Since g is monomial, w; and (w;)g have the same number of non-zero entries (which is i + 1
for i # n and n for ¢ = n) in the decomposition with respect to 3. Therefore, (w;)g € (w;) for
i < n—1,sor must fix {1,2} and points 3,...,n. Thus, (w,—_1)g is either dw,_; or dw, for
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some § € F. If r fixes the point 1, then § = g1 = g2 = ... = g1 = Fgy; if (1)r = 2, then
§=—g1=—-g2=03="...=gn_1 = %gn. It is easy to see that MU, (q) N MU, (¢)Z™9 lies in

{diag((-1)'c, (-1)'cv, @, ..., ,®a) - (1,2)" | @ € Fe5i € {0, 1}}.
Therefore, MU,,(¢) N MU,,(q)2(»97 = (MU,,(q) N MU,,(q)Z™)7 lies in

{diag((—1)'e, (-1, ;... a,£a) - (1,2)" | @ € Fpesi € {0,1}}7

C {diag(ta, o, ..., (—1)'e, (—1)') - (n,n — 1)" | € F 250 € {0,1}}
and
MU, (g) N MU, (q)%"9 0 MU, (q)?97 < Z(GU,(g)).

(2) Let 1 # a € F,. Since ¢ : F, — F, mapping = to z? is a Frobenius automorphism of F,,
every element of F, has a unique square root in F,. Therefore, the matrix C'(n,a) exists and
lies in GUp(q).

Suppose that n > 3 is odd and consider g € MU, (q) N MU, (¢)¢™%, so

g = diag(g1,...,gn)r

Let 8 = {v1,...,v,} be the orthonormal basis as in (1). Since g is monomial, it stabilises the
decomposition

(V1) D ... D (vy).
Since g € MUn(q)C(”’a), it stabilises the decomposition
{(v1)C(n,a)) @ ...® ((v,)C(n,a)).
We write w; for (v;)C(n,a). Notice that
w1 = Va2 + lvy + ave;
Wy, = av + vy + ... + dvp_1 + dvuy,
and if 1 < ¢ < n, then
Ve 1+ (a+a 4. 4 (a4 a v+ avig if 7 is odd;
Ve F1u+(a+a Doa+ ..+ (a+a Yo+ —avyy1  if i is even.

Since g is monomial, w; and (w;)g have the same number of non-zero entries (which is i + 1
for i # n and n for i = n) in the decomposition with respect to 3. Therefore, (w;)g € (w;) for
i <n—1,s0r must fix {1,2} and points 3,...,n. Assume that (1)r =2, so

(w1)g = g1V a? + 1va + goavy.
g1V a? + lvg + goavy = y(V a2 + 1vg + avs)
q+1 q+1

for some v € F,2. Calculations show that ga(g1) ™' = 1+a~* Notice that g{ "~ = g3 = 1, since
g € MU, (q). Hence (g2(g1)~1)?"! must be 1. However,

(I+a )™ =(1+a?)?=1+a1#1.

So r must fix the points 1 and 2.
Since (wp—2)g € (wp—2), we obtain g1 = ... = g,—1. Assume that (w,—1)g = yw, for some
v € Fp. Then g1 =vva? + 1 and g, = y(vVa? + 1)1, Since ()7 =1 foralli=1,...,n,

,}/I+1(a2 + 1) — ,),Q+1(a2 + 1)71 =1.

Since (w1)g € (wy),
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Therefore, a® + 1 must be equal to (a? + 1)~!, which is not true since
(> +1)2=a*+1#1.
Thus, (wp—1)g = Ywnp—1 and g is a scalar.
The proof of (2) for even n is analogous to that for odd n.

(3) For ¢ = 5 the statement is verified by computation. For g # 5 the statement follows from
Lemma 2.13 since SUz(q) = SLa(q).

(4) For n < 7 the statement is verified by computation. Assume n > 7. Let a be a generator
of F, s0 a? =a+ 1 and a® = 1. Let 8 = {v1,...,v,} be the orthonormal basis of V such that
GU,(q) = GU,(q,f3). Let E(n,a) € GU,(2) be defined as follows. If n is even, then

1 ifi=1;
S, if i =2
(a+1)v; + avit1 + Z?=i+2 vj ifiisodd and 3 <i<mn;
avi + (a+ Dvipr + 30 o0 ifiisevenand 3 <i<n.

(vi)E(n,a) = w; =

If n is odd, then

2?21 Uj ifi=1;
(vi)E(n,a) = w; =< (a+ 1)v; + avigy + Z;‘L:HQ v; ifiisevenand 2 <i<m;
avi + (a+ v + Y7 pv;  ifiis odd and 2 <i <n.

For example, F(8,a) is

1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1
0 a+1 a 1 1 1 1 1
0 a a—+1 1 1 1 1 1
0 0 0 a+1 a 1 1 1
0 0 0 a a-+1 1 1 1
0 0 0 0 0 a+1 a 1
0 0 0 0 0 a a+1 1

We obtain E(7,a) by deleting the first row and the first column in E(8, a). It is routine to verify
that E(n,a) € GUp(2).
Let m € GU,(2) be the permutation matrix corresponding to the permutation
(I,n)(3,n—1)(5,n—2)(6,7,...,n — 3) if n is even;
(I,n)(3,n—1)(5,6,7,...,n — 3) if n is odd.

We claim that MU, (2) N MU, (2)(% 0 MU, (2)#*)" < Z(GU,(2)). We prove this for even
n; the proof is analogous for odd n.

Consider g € MU, (2) N MU, (2)#(™9) so
g = diag(glv s 7gn)ra
where r € Sym(n) and g; € F}. Since g is monomial, it stabilises the decomposition

(V1) D ... D (vy).
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Since g € MU,,(2)F(™® it stabilises the decomposition
(w1) @ ... D (wy).

Since g is monomial, w; and (w;)g have the same number of non-zero entries in the decomposition
with respect to . Therefore, (w;)g € (wp—2,wp—1,w,) for n —2 < i < n, so r must fix
{n—2,n—1,n}. Ifi € {n —4,n — 3}, then (w;)g € (wWp—4,wn_3), so r must fix {n —4,...,n}
and, therefore, {n — 4,n — 3}. Continuing this process, we obtain that r fixes
{1},{2,3},{4,5},...,{n—4,n=3},{n —2,n — 1,n}. (3.1)

Now assume g € MU,,(2) N MU, (2)%(®". The above arguments show that r must fix

{7}, {@)m, @)} { (@), B)7}, ... {(n = )7, (n = )7}, {(n = 2)7, (n — )7, ()7}
which are
{n},{2,n—1},{4,n—2},{7,8},...,{n—3,6},{1,3,4}.
Combining this with (3.1) we obtain that r is a trivial permutation, so g is diagonal.
Observe that (w2)g = (0, 92,93, - .., gn) With respect to 8. Since (wz)g € (wa, w3, wy),
ga=95=...= Gn.

So g = diag(g1, 92,93, A, ..., A) for some X\ € F}. Let u; = (v;) E(n,a)™. Therefore,

up = (1,...,1,0)

Un—1 = (L,a+1,1,...,1,a,0)

ug = (L,a,1,...,1,a+1,0)

are the only vectors in {u1,...,u,} that have n — 1 non-zero entries in the decomposition with

respect to 3. Hence (ug)g lies in (uz), (un—1), or (uy) since g € MU, (2)£(9)™ and stabilises the
decomposition

(u1) ® ... ® (up).
Notice that (u2)g = (91,92,93,A, ..., A,0) Hence (uz2)g € (u2) and g1 = g2 = g3 = A. So
g =M, € Z(GU,(q)). Therefore,
MU, (2) N MU, (2)E0) n MU, (2)F™9)" < Z(GU,(2)). O
Remark 3.15. In Lemma 3.14 each statement of (1)-(4) can be written as

SNS™N...NS" < Z(GUn(q))

for z; € GU,,(¢) with suitable S. In each case we can assume x; € SU,(q). Indeed, if det(z;) # 1,
then a; = diag(det(z;)~1,1...,1) € S since S is the group of all monomial matrices in GU,(q),
so ST = §%i,

Theorem 3.16. Let Z(GU,,(q)) < H < GU,,(q). Assume that there ezist a,b € GU,(q) such
that

HNH*NH® < Z(GUp(q)).
Let M = (]FZQ)qfl LT for T' < Sym(k), so M is a subgroup of monomial matrices in GUg(q).
Assume that there exist x,y € GUy(q) such that

M N M* N MY < Z(GUg(q)).



26 ANTON A. BAYKALOV

Denote

X=I,Qx A=a® I

Y=1,®y B=b® Ij.
Ifn=mk and S = H!T' < GU,(q), then

SN SN SBY < Z(GUL(q)).
Proof. Consider h € SN S4X, so h = g4 where g € S. Hence
g* = diaglgy, ..., g -,

where g; € H* and 7 = I, ® m; for some m € Sym(k). If

Tl ... Tk ol .o ozl
r=| : : |, then 271 = E
Tl .. Thk zf, ... wl
since x € GUy(q), and
zi1lym ... x1pIlm
X = : :
«Tkllm . CUkkIm
Here @5 € Fy2. The i-th (k x k)-row of X~ 'g is equal to
(xt(ll)ﬂflig(l)ﬂfl’ "' ’xt(zk)ﬂflig(k)nfl)' (3.2)

Let 7 be such that the (i, j)-th (m x m)-block of h is not zero (there is only one such j for given
i since h € S). Consider the system of linear equations with variables Zy,...,Z; € H®

1121+ x01 40+ ...+ 214 =0

JiljZl + :EQjZQ +...+ SUijk =0 (33)

Tl + Toplo + ...+ xR Zr, = 0,

where we exclude the (underlined) j-th equation. Thus, (3.3) consist of k—1 linearly independent
equations. If we fix Z; to be some matrix from GL,(¢?), then Z; for i = 1,...,k — 1 are
determined uniquely. It is routine to check that

(:z:(ij, . ,:L‘Z]-D) where D € GL,(¢?)

is a solution for the system (3.3).
Notice that the row (3.2) must be a solution of (3.3), since X 'g4X = h € S. Therefore, by
fixing 7}, to be :chDi = x‘(lk)wl_lig(k)ﬂ;1, we obtain
q q — (£1.D. 4.
(x(l)ﬂ_l_lzg(l)ﬂ_l—l, “e ’x(kj)’]'rl_lzg(k)ﬂ—l_l) - (xlle) e ,:L‘k]DZ)
for some D; € aH®, o € IE‘ZZ, since g; € H®. Thus,

h = diaglhy,...,hi| - o
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where h; = D;. Therefore, a4t! = 1 and D; € H®, since h; € GU,(q). So h; € HN H® and
o€ I ®Sym(k).
Assume that h € SNSBY  so h = (¢)BY for ¢ € S. The same argument as above shows that

h = diag[hl, e ,hk] e
where h; € HN H® and o € I,,, ® Sym(k).
Therefore, if h € SN SAX N SBY then h; = \il,, € HN H®N H® for some \; € IFZQ with
)\?H =1. So g4, ¢'% € I, ® M and

hel,®(MNM NMY) < Z(GUu(q)). O

Remark 3.17. If a,b € SU,,(¢) and z,y € SUg(g) in Theorem 3.16, then AX, BY € SU,(q),
since AX =a®x and BY =b®y.

Lemma 3.18. Let Z(GU,,(q)) < H; < GU,,(q) fori € {1,...,k} such that GUg(q) is not
solvable. Assume that there exist a;,b; € GU,,(q) such that

H;NHY N HY < Z(GUp(q)).

Let H = {diag[hi,...,hg| | hi € H;} < GU,x(q), so H = Hy X ... x Hp. Then there exist
A, B € GU,ui(q) such that HN HAN HP < Z(GU,i(q)).

Proof. Let D be the subgroup of all diagonal matrices in GUy(q) = GUg(q, Ix). By Theorem
2.10, there exists x € GUg(q) such that D N D* < Z(GUk(q)). Let X = (I, ® ), A =
diaglay,...,ax]X and B = diag[by, ..., by

Consider h € HN HA, so h = g where g € H. Hence

g = diaglg, ..., gu)™

where g; € H}*. The same arguments as in the proof of Theorem 3.16 below (3.2) (with j = i and
7 trivial) show that h = diag[hi, ..., hg] with h; € H;NH{". Assume that, in addition, h € NH?;
then, clearly, h; € H; N H" N Hfi < Z(GU,,(q)). Therefore, X = gdiaglaiail € [ @ D, so
he I, ®(DND*) < Z(GUpi(q)). O

Lemma 3.19. Let k € {2,4,6,8}. Let H be an irreducible subgroup of GU (V') that stabilises
the decomposition

V=Vie...eoV

as in (2) of Lemma 2.6, so each V; is totally isotropic and dim V; = m, where n = km. Denote
Stabp (V1),, < GL(V1) by Hy. If there exist a,b € GL(V1) (respectively SL(V1)) such that

H,NH!NHY < Z(GL(W)),
then there exist A, B € GU (V') (respectively SU(V')) such that
HNHA*NHB < Z(GU(V)).

Proof. Let a € IFZQ be such that a4+af = 0. Such « always exists. Indeed, if ¢ is even, then « can
be an arbitrary element of IFy. Assume that ¢ is odd and 7 is a generator of IF':;Q, SO n(q2—1)/2 =-1

is the unique element of order 2 in FZQ. Let a = n(@t1)/2 therefore, a?~! = —1 and o4 = —a, so
a+a? =0.
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Assume k = 2. Let 8 be a basis as in (2.3). Since V; is totally isotropic, we can assume that
Vi ={(f1,..., fm) by Lemma 2.4. Every v € V has a unique decomposition v = vy + vy, v; € V.
Define the projection operators m; : V- — V; by (v)m; = v; for i = 1,2. Notice that

(firej) = (fis (e5)m1 + (ej)m2) = (fi, (ej)72)

since V; is totally isotropic. Also ((e;)m2, (ej)m2) = 0 since V4 is totally isotropic. Therefore, the
form f has matrix fg, = Jo,, with respect to the basis 81 = {f1,..., fm, (e1)m2, ..., (em)m2}. In
other words, we can assume that

V2 = (61,...,em>.

Therefore, applying the above argument to each U; = Va1 @& Vs, for i € {1,2,3}, we obtain
a basis

B={fir, s frms€1t, s €imy oo fky2)1s -+ s Fky2)yms €(k/2)15 - - -5 €(k/2)m }

of V such that fﬁ = J2m & Ik/Q and vaz',l = <fi1, RN fzm>a VQZ‘ = <€Z'1, N ,eim>.

Recall that gt = (g7)~! for ¢ € GU,(q). For z € GL,,(¢?), denote by X (k,z) the initial
(k x k)-submatrix of the matrix

ox T ox T 0 0 0 0
0 (ax)f| O 0 0 0 0 0
0 -z 0 x 0 0 0 0
10 0 rt —(ax)" | 2t —(ax)T | O 0
X@ == 0 0 a =z |0 0
0 (ax)t 0 —(ax)' 0 (ax)' | 2T —(az)f
0 0 0 0 0 0 ox x
0 0 0 0 zf —(ax)t 0 (ax)t

It is routine to check that X (k,z) € GU,(q,f3). If g € HgN H?(k’a’), then g stabilises both

VleEB...@Vk, (3-4)
and
V=V)X(ka)®...&Vi)X(ka). (3.5)

Let k = 8 and v € V. Since g stabilises (3.4), (v)g and v have the same number of non-
zero projections on the V;. Hence g stabilises (V)X (k, a) and V5 because (V3) X (k, a) is the only
subspace in (3.5) which has only one non-zero projection on the V;. Therefore, g stabilises V; and
(V)X (k, a) because they are the only subspaces which are not orthogonal to V5 and (V2) X (k, a)
respectively in decompositions (3.4) and (3.5). Since g stabilises V5, it stabilises (V3)X (k, a),
so g also stabilises V3, V4 and (V)X (k,a). Since g stabilises (V4)X (k,a), it stabilises V5 @ Vg,
so it stabilises (V5)X (k,a) and (V5)X (k,a). Now it is easy to see that g must stabilise V5 and
Vs. Since g stabilises (V7)X (k,a) & (Vg) X (k,a), it stabilises (V3)X (k, a), so g stabilises Vg and
V7. Therefore, g stabilises all subspaces in (3.4) and (3.5), so g = diag[gl,gi, e Ok 92/2] with
g; € Hy.
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Since X (z)~* (m) fs,
( o 0 -z 0 0 0 0
0 (az)" 0 0 0 0 0 0
0 z' —(az)™t 7" | —(ax)7! 0 0 0
_ 0 (az)" 27! 0 0 0 0 0
X(z) =
(z) 0 0 —(az)™t 0 (az)™? 7' | —(ax)™! 0
0 0 z~! 0 0 (az)" | a7t 0
0 0 0 0 —(ax)™™ 0 (az)™t  T"
0 0 0 0 r! 0 0 (az)"
A similar argument to the above shows that if h = gX(k’“r1 € HgnN HX(k 2 , then h =

diag[hl,hJ{, ... ,hk/Q,h-I];/2] with h; € Hi. Calculations show that if the equation hX(k’“) =g
holds, then

gi =g9(20—1,2i—1)=h? fori € {1,2,3,4}

0 =g(1,2) = (aa) thia+a' hi(aa)l = a7L(h§ — (h));

0 =g(1,3) = (aa) hi(aa) —a hiat = b — (h9)T;

0 =g(1,5) = -z hla" + (ca)'hs(aa) = hg — (h)T;

0 =9(8,5) =a 'hz(aa) + (aa) " hja’ = a(hg — (h§)1).
So h{ =g :g]lL... = k)2 :gk/2 and g1 € Hq N HY.

If g € HgN Hg((k’a) N Hg((k’b), then the same argument with a replaced by b shows that
9= diag[gla s 791] and g1 € H1 N Hil N H{)a S0 g € Z(GU2m<q7f,3))

The proof for k € {2,4,6} is analogous.

Calculations show that if z € SL,,(q), then

1 for k = 4,8;
det(X (k,z)) = o )8;

(=)™  for k = 2,6.
Consider A = diag[aly, ally,, I, ..., L] € GU,(q,fs). Notice that det(A) = (—1)™. Repeat-
ing the arguments above, one can show that

AX (k,b)

Hyn 1y 0 i < Z(GU,(q,£3)).

Notice that X (k,a), X (k,b) € SU,(q,fs) for k = 4,8 and AX(k,a), AX(k,b) € SU,(q,fps) for
k=26 0

Lemma 3.20. Let n = mk for integers m > 3 and k > 2.

(1) If S = GU2(2) ! Sym(k), then bg(S - SUg(2)) < 3.

(2) If S = GUa(q) 1 Sym(k), q € {3,5}, then bg(S - SU2(3)) < 3.

(3) If § = GU3(2) 1 Sym(k), then bs(S - SUszk(2)) < 3.

(4) Let N be a quasi-primitive maximal solvable subgroup of GU,,(2). If S = N Sym(k)
with k € {2,3,4}, then bg(S - SUgm(2)) < 3.

(5) Let N be a quasi-primitive mazimal solvable subgroup of GU,,(3). If S = N Sym(2),
then bg(S - SUzp(3)) < 3.

Proof. Notice that S -SU,(q) = GU,(q) for (1) — (2).
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(1) Notice that AT =1 for ¢ = 2 and \ € F?;. Therefore, since a row v of a matrix in
GU,(q) satisfies f(v,v) = 1, every matrix in GUg(2) is monomial. Thus,

S = GUy(2) 1 Sym(k) < MUa(q)

and the statement for k& > 2 follows by (4) of Lemma 3.14. The case k = 2 is verified by
computation.

(2) For k € {2,3} we verify the statement by computation, so assume k > 4. Let § =

{v11, v12, V21, V22, ..., U1, k2 } be an orthonormal basis of V' such that S stabilises the decom-
position V1 @ ... ® Vi with V; = (v;1, vi2). Define a basis 81 = {wi1, w12, war, waa, ..., Wk, Wka }
by the following rule:

(w11, wa1, ..., wg1) = (vi2,v21, ..., v1)B(k, a);

(w12, w2, ..., wk2) = (v22,v32, . .., V2, v12) B(k,a).

Here a and B(k,a) are as in (1) of Lemma 3.14. Denote the change-of-basis matrix from f; to
B by y. For example, if k = 4, then

a a
a a
a? —a? a
B a? —a? a
Y= Ia3 —a3 —a? a
a a’ —a3 —a?
a’ —a3 —a? —a
—a a’ —a? —a?

We use blanks instead of zeroes in the matrix. It is routine to verify that 5y is orthonormal, so
y € GUgg(3). Observe g € SN SY stabilises the decompositions

Vl@...@Vk andWl@...@Wk,

where Wi = <wi1,w¢2).

Notice that wi; has non-zero entries only in two Vi-s, so (wi1)g also must have non-zero
entries only in two V;-s. It is easy to see that a vector from W; for j > 1 has non-zero entries
in at least three V;-s. Thus, g stabilises W;. The same argument shows that g must stabilise
W; for i =1,...,k — 2. Notice that (w;;)g lies either in (w;1) or (w;2) for i =1,...,k — 2, since
otherwise it would have non-zero entries in more V;-s than w;.

Assume that (wi11)g € (w12). Therefore, (w12)g € (wi1), so either

(‘/Yl)g = V27 (V2)g = ‘/37 (V3)g = V1>
or

(‘/l)g = V37 (‘/2)9 = V27 (‘/3)9 = Vl'
In both cases (wa2)g cannot lie in either (wg;) or (wag), which is a contradiction. So g stabilises
(w11) and, therefore, it stabilises (w12), since (wi2) is the orthogonal complement of (w11) in Wj.
Therefore, g stabilises Vi, Vo and V3. The same argument shows that g stabilises Vi,..., Vip_1,
so g stabilises Vj, as well. Thus, g stabilises

(wi1), (w12), .. ., <w(k72)1>7 <w(k72)2>,

which implies that g stabilises (v11), (v12), ..., (Vk1), (Vk2). So

g = diag(gll)9127 cee 7gk1)gk2)'
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Since (w11)g € (wi1), g11 = go21. Applying the same argument to all w;; for i =1,...,k —2 and
j = 1,2 we obtain that g is scalar.

(3) For k < 3 the statement is verified by computation, so assume k > 4. Fix
B = {v11,v12,v13,v21, - . - , Vk3}
to be the initial orthonormal basis, so g € S stabilises the decomposition
V=Vo...eV, (3.6)

where V; = (vj1,v;2,vi3). Let x be the permutation matrix for the permutation (1,2,...,n)
where n = 3k. Consider g € SN S*. We claim that g is monomial. Indeed, since g € S%, it
stabilises the decomposition

V = (Vl)l' D...D (Vk)x = <1)12,’U13,U21> D...H <Uk2,1}k3,’l}11>, (3.7)
so it permutes subspaces (v11), (va1),..., (vk1) and (via,v13), (Vag, v23), ..., (Vg2, Vk3). Thus, g
consists of (1 x 1) and (2 x 2) blocks which lie in GU;(2) and GU2(2) = MUy(2), respectively.
Define a basis 51 = {wi1, w12, w13, w21, . .., wks} as follows:
k-1 3
wiy = ZE Y+ op + (14 (=1)%)/2)vge
i=1 j=1

wi2 = V11 + V12 + Vg3
w13 = V11 + V21 + Vg3
Ws1 = V11 + V(s_1)3 + Vk3
Ws2 = V11 + Us2 + Vi3
We3 = V11 + VU(s4+1)1 T Vk3
Wkl = V11 + Vk—1)3 + Vg3
Wg2 = V11 + Vg2 + Vg3

k 3
wig = (14 (=1)F)/2)via +vis + (3D i)

=2 j=1

Here 1 < s < k. Denote the change-of-basis matrix from (1 to 8 by y. For example, if k = 3,
then

el e e

O OO O OO = =
_ O OO0 OO O
OO0 OO O
—_ O OO = OO O =
—_ O RO OoOoOo o

O Ol O OO O
—= =00 OO0 OO
i e i B e e )

o
]
—_

It is routine to verify that f$; is orthonormal, so y € GUsx(2). If g € SN S* N SY, then g
stabilises decompositions (3.6), (3.7) and

V=W&.. oW,
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where W; = (wj1, wi2, ws3). Since ¢ is monomial, w;; and (w;;)g have the same number of non-
zero entries in the decomposition with respect to 8. Therefore, (wi1)g can lie either in Wy or
in Wy. Assume that (w11)g € Wy, so (W7)g = Wy. If a vector in Wy has the same number of
non-zero entries in the decomposition with respect to 3 as wiy, then its first 1+ ((1+ (—1)%)/2)
entries are zero. So g must permute subspace (vi1,vi2) with (vgg, vgs) for k£ odd (respectively
(v11) with (vgs) for k even) which contradicts the fact that g stabilises decompositions (3.6) and
(3.7). Therefore, g stabilises W7 and (wi1) in particular. It is easy to see now that g stabilises
(w12) and (wy3), since g stabilises (3.6). Thus, g stabilises Vi, Vi and V5, so it stabilises (v11),
(v12), (v13), (v21), (vgs). Using the same argument, we obtain that ¢ is diagonal. Since g
stabilises (w11) and (wgs), all non-zero entries of g must be equal, so g is scalar.

(4)-(5) For n < 12 we verify the statement by computation. For larger n we prove the
statement by checking (2.11) with ¢ = 3 for the elements of prime order of H < PGU,(q), where
H and G are the images of S and S - SU,(q) respectively in PGU,(q).

Let B be the image in G of the block-diagonal subgroup

GUp(q) X ... x GUp(q) < GUgp(q).

Let © € H have prime order.

If (Jo| > 3 for k € {3,4}) or (|z| > 2 for k = 2), then % N H C B. In this case there exists a
preimage & = diag[zy, ..., 2] of x in GUyy,(¢) such that #; € N. If z; # 1, then v(z;) > m/4 by
Lemma 3.9. We can assume that z is such that the number I(z) of z; not equal to 1 is maximal
for elements in & N H. Therefore,

v(x) > (1/4)l(x)m and [27 0 H| < () [N

These bounds together with bounds from Lemma 3.8 for |N| and (2.12) for |#¥| are sufficient
to show (2.11) holds for mk > 12.

Now consider the case where & N H is not a subset of B. For such z, we use the bounds for
|2%| and |2% N H| given in [10, Propositions 2.5 and 2.6]. These propositions give corresponding
bounds when H = (GU,,(¢) ! Sym(k))/Z(GU,(q)), so they are applicable in our situation. For
mk > 12, these bounds are sufficient to show that (2.11) holds.

We briefly outline how to extract the corresponding bounds. The proofs of the propositions
split into several cases depending on |x|, m, k and |H (o, E/E°)| (see [9, Definition 3.5]). Notice
that if z is semisimple, then |[H' (o, E/E°)| = (|z|,q + 1) by [8, Lemma 3.35].

Assume that k = 2, so |z| = 2. If ¢ = 2, then we use the bounds from Case 2.2 of the proof
of [10, Proposition 2.6] for unipotent z. If ¢ = 3, then we use bounds from Case 2.4 of the
proof of [10, Proposition 2.5] for semisimple x.

Assume that k € {3,4}, so ¢ = 2. If |z| = 2, then we use the bounds from Case 2.2 of the
proof of [10, Proposition 2.6] for unipotent x. Let |x| = 3. We use bounds from Case 2.2
(if |H' (o, E/E®)| = 1) and Case 2.3 (if |H'(c, E/E®)| = 3) of the proof of [10, Proposition
2.5]. O

Theorem 3.21. Let (n,q) be such that GU,(q) is not solvable. If S is an irreducible mazimal
solvable subgroup of GU,(q), then either bg(S - SU,(q)) < 3 or bs(S - SU,(q)) = 4 and one of
the following holds:
(1) (n,q) = (2,5) and S is a completely irreducible subgroup with S/Z(G) isomorphic to
22'Sp2(2);
(2) (n,q) = (4,2) and S is conjugate to GU1(g)1Sym(4) = MU4(2) (so S-SU,(q) = GU,(q)).
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Proof. The base sizes for (1) and (2) are verified by computation. Let us fix ¢ and consider a
minimal counterexample (1, .S) to the statement of the theorem. So n is the smallest integer such
that GU,(q) is not solvable and GU,(q) has an irreducible maximal solvable subgroup S with
bs(S-SUy(q)) > 3 that is not asin (1) and (2) of the lemma. Since PGUz(q) = PGL,,(2), Lemma
2.13 and Theorem 3.12 allow us to assume n > 3. By Lemma 3.11, S is not quasi-primitive, so
S has a normal subgroup L such that V' is not homogeneous as F,[L]-module. Therefore, S and
L satisfy the conditions of Lemma 2.6. So S stabilises a decomposition

V=Vvie..oV, k>2 (3.8)

such that (1) or (2) of Lemma 2.6 holds. Let us fix (3.8) to be such a decomposition with the
largest possible k.

If (1) of Lemma 2.6 holds, then consider Sy := Stabg(V1)|,, < GU(V4). By Clifford’s Theorem
S1 acts irreducibly on Vj. Note that S is quasi-primitive. Indeed, if S is not quasi-primitive,
then S; stabilises a decomposition

Vi=Vi1®...0 Vi

for some ¢ > 2 such that (1) or (2) of Lemma 2.6 holds. Therefore, since S is irreducible, it
stabilises the decomposition

V=Vi1®..oV®...0 Vi1 ... Vi,

for which (1) or (2) of Lemma 2.6 holds contradicting the maximality of k in (3.8).

If dimV; = 1, then S can be represented as a group of monomial matrices with respect
to an orthonormal basis. By Lemma 3.14, this is possible if and only if (n,q) = (4,2) and
S = MU4(2). Assume dimV; = m > 2. If ¢ € {2,3,5} and S is conjugate to a subgroup of
one of the groups listed in Lemma 3.20, then bg(S - SU,(¢)) < 3 which is a contradiction. If
S is not conjugate to a subgroup of a group from Lemma 3.20, then GU,,(q) is not solvable.
Therefore, S; < GU(V}) is not as S in (1) and (2) of the theorem, S; satisfies the condition of
the theorem and bg, (S1 - SU(V1)) < 3 since (n,S) is a minimal counterexample. Thus, there
exist a,b € SU(V;) such that S NS¢ NSY < Z(GU(V1)). Applying Theorem 3.16 and Lemma
3.14 we obtain bg(S - SU,(q)) < 3.

Finally, let us assume part (2) of Lemma 2.6 holds. Let U; = Va;—1 & Vo, so

V=UiL... LUy

and S transitively permutes the U;. Indeed, since S acts on V' by isometries, (V2;—1)g and (Va;)g
cannot be mutually orthogonal for g € S, which is possible if and only if (V2;—1)g and (Va;)g lie
in the same U; for some j = 1,...,k/2. Transitivity follows from the irreducibility of S. Consider
Sp = Stabg(Ul)]Ul. Notice that dim Uy = 2m > 2.

If (2m,q) € {(2,2),(2,3)}, then, since S is a maximal solvable subgroup of GU(V), it must
be conjugate to GUsgp,(¢) ¢ I" with I' < Sym(k/2). In this case the theorem follows by Lemma
3.20. Otherwise GU(U;) is not solvable. If k > 8, then S; < GU(U;) satisfies the condition of
the theorem and bg, (GU(U1)) < 3 since (n,.S) is a minimal counterexample. Notice that S; is
not as S in (1) of the lemma since S} is imprimitive (it is easy to check computationally that
S in (1) of the lemma is primitive), and S; is not as S in (2) of the lemma since otherwise k
is not maximal possible. Thus, there exist a,b € SU(U;) such that S; NS¢ N SY < Z(GU(UY)).
Applying Theorem 3.16 and Lemma 3.14 we obtain bg(S - SU,(q)) < 3. Let k < 8. Consider
P = Stabg(V1)|,, < GL(V1), so P is an irreducible solvable subgroup of GL(V1) and there exist
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a,b € SL(V}) such that P N P* N P? < Z(GL(V})) by Theorem 2.11. Applying Lemma 3.19 we
obtain bg(S - SU(V)) < 3, which contradicts the assumption. O

Theorem 3.22. Letn > 2 and (n,q) € {(2,2),(2,3)}. If S < GSp,,(q) is an irreducible mazimal
solvable subgroup, then one of the following holds:
(1) bs(S - Spu(q)) < 3;
(2) n=2,q=25, S is an absolutely irreducible subgroup such that S/Z(GSpy(q)) is isomor-
phic to 22.py(2), and bs(S - Spy(q)) = 4;
(3) n =4, ¢ € {2,3}, and S is the stabiliser of decomposition V. = Vi LVy with V; non-
degenerate and bs(S - Sp,,(q)) = 4.

Proof. If n = 2, then GSpy(q) = GL2(g) and the theorem follows from Theorem 2.11. The
following is verified by computation: if n =4 and ¢ € {2,3,5}, then either bg(S - Sp,,(¢)) < 3 or
S is as in (3).

Assume that n is minimal such that there exists a counterexample to the theorem: namely,
(S,m,q) is such that bg(Sp,(¢)) > 3 and neither of (2)—(3) hold. If S is quasi-primitive, then it
is not a counterexample by Theorem 3.12. Hence S is not quasi-primitive, so S has a normal
subgroup L such that V' is not F,[L]-homogeneous by Lemma 2.6. Therefore, S stabilises a
decomposition

V=Wie..oV (3.9)
such that dim V; =m for i € {1,...,k}, £ > 1 and one of the following holds:

Case 1. V = Vi L ... 1V, with V; non-degenerate for ¢ = 1,..., k. We do not require V; to be
the F,[L]-homogeneous components. In particular, this includes the case when (2) of
Lemma 2.6 holds with k& > 2.

Case 2. V =V &V, with V; totally isotropic.

Case 1. Let us fix (3.9) to be a S-invariant orthogonal decomposition of V' with the largest
possible k. Let H; be Stabg(V;)|,. < GSp,,(¢). Since S is irreducible, the H; are pairwise
conjugate in GSp,,(q), so, in suitable basis, S < H; ¢ Sym(k). In other words, we could assume
H; = Hy for all i € {1,...,k}. We keep the distinction between the H; since we refer to this
proof in Lemma 5.1 where the H; are conjugate in I'Sp,,(¢) but not necessarily in GSp,,(q).
This case splits into two subcases: k> 3 and k = 2.

Case 1.1: k > 3. Notice that H := H;j is an irreducible maximal solvable subgroup of
GSp,,,(q). Moreover, H is not as S in (3) since otherwise V; = Vj;1 L Vs with non-degenerate V;
and S stabilises the decomposition

V = (‘/11J_V12)J_ e J_(Vli_VkQ)

which contradicts maximality of k. Since m < n and H is not a counterexample, we can assume
that either there exist x1, 22 € Sp,,,(q) such that HNH* N H*? < Z(GSp,,,(¢)) or H = GSp,(q)
with ¢ € {2,3,5}. In the latter case we take 1 = x9 = Is.
Let {vi,u1,..., v, up} be a basis of a 2k-dimensional vector space over Fy,. Let y; and z; be
the matrices of the linear transformations of this space defined by the formulae:
(vi)yn =v; —vigq forie {1,... k- 1}

(vk)y1 = Vk;

(wi)yr = Zu, forie {1,...,k};
j=1
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and
(v1)z1 = V13 (u1)z1 = u1 + v2;
i
(’UZ')Zl = V; — Vit+1 for i e {1,...,]{—2}; (ul)zl = Zuj for ¢ € {2,...,k— 1};
j=1
(Vk—1)21 = Vk—1 + Up; (ug)z1 = ug;
k—1
(vk)z1 = v + vk + Zuj.
j=2

For example, if k£ = 4, then

1 0/-1 0l0 o]0 0 1 0/oo0]0 0|00
01/0 0/ 0 0l0 0 0 1/10/0 0[]0 0
00/ 1 0/-1 00 0 0 0|1 0]-10[0 0

o 1]o 10 0olo o 1 0/o1]0 0|00

=0 o0l0 ol1T ol-1T 0|’ [0o0[00[ 1T 001
01/0 1|0 1/0 0 1 0/o 1|0 1]0 0
000 0/ 0 0|1 0 T 0/0 1[0 1]1 0
01/0 1|0 1|0 1 00l00/l0 001

Let 3; be a basis of V; of shape (2.4) fori € {1,...,k} and let B be S1U...UBk. Lety = I,,,/o@y
and z = I, 5 ® 21. It is routine to check that y, z € Sp,,(q, f3).

Let W; = Vi(x; ® I)y for i € {1,...,k}. Consider g € SN S=®)Y 5o g stabilises decom-
positions V = ViL... 1V, and V = Wy L ... LW. Notice that W, has non-zero projections
on exactly ¢ + 1 of the Vj for ¢ € {1,...,k — 2}. So g cannot map such W; to others and,
therefore, g stabilises subspaces W1,..., Wy_o and {Wj_1, Wy }. Thus, g stabilises {V1, V2} and
Vs, ..., V. Notice that dim(Vy N Wi) = m/2 and dim(Ve N W;) = 0. So (Vi)g = Vi since
(VinWi)g = (Vi)gn (Wi)g = (Vi)g N Wy # {0}. The same argument for V,, N W,, shows that
(Whn)g = W,. Hence g stabilises all V; and W; for i € {1,...,k}; in particular

g = diag|g1, ..., gk
for g; € H;.
Now let us show that g; € H; N H;* for all ¢ € {1,...,k}. Since g € SN SE1@L)Y e
obtain g = @@ where h € § N S(@®WY) ™" The same arguments as above show that
h = diag[hy, ..., hg] with h; € H;. Denote h¥' by h; and h*'® = diaghy,...,hx] by h, so

~ ~ hei1y b,
g=hY. Let h; = (hilg hgzji) , where h; j) € GL,, /2(q)-
Consider the last (m x m)-row of g = h¥. Calculations show that it is
0,...,0,9x) = (A1, Aa, ..., Ag)
with
0 h
4 = (k2) > forie {1,... k-2
(O h(k74) - h(k_lA) or 7 { 9 1) }7

0 h
Al 1 = (k,2) > 7
o <_h(k1,3) h(k,S) - h(k71,4)

h h
A, — (k,1) (k,2)> .
g (h<k,3> —h—13) I
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So, Ah(k—lA) = hay; he2) = he—1,3) = 0 and hy, = gi.. Consider the (k — 1)-th (m x m)-row of
g = hY. As above, we obtain

h(k—2,4) = P(k—1,4);
h(k—2,1) = h(k—1,1);
h(k—23) = h(x-12) =0

and hy_1 = g_1.

Continuing in the same way we obtain for all 4,5 € {1,...,k}:
ibi = gi;
hiay = Dja-
Also
- h h - h 0
i (M (1,2)) g = ( (k,1) >
! < 0 haaw) T \hawsy A
and

iLZ‘ = h(i’l) 0 for 1 <i<k.

Hence g; € H; N H.
Assume now that g € § N S@2®k)z ¢ — ((@2@1)2 where t € SN S(@2®1k)2) 71 Using similar
arguments to above, we obtain

g = diag[g1, ..., gx] = diag[t1, ..., 1],
where t; € H is defined analogously to h; € H:'. In addition,
t(k_1’4) = t(k,l) and t(k,3) == t(1’2) =0. (3.11)
Therefore, if g € SN S@E1@Y N §(@281k)2 then, by (3.10) and (3.11), g = diag|gi, ..., gx] and
gi = gidiag[d, 0] € H N H* N H* with § € GL,,/5(q) for all i € {1,...,k}. If m = 2, then g is
scalar, so S N S*1®)y 0 §=281k)z < 7(GSp,,(¢q)). If m > 2, then H is not a counterexample,
sogi€ HNH" N H" < Z(GSp,,(q)) and g € Z(GSp,,(¢,3)).

Case 1.2: k£ = 2. Let H = Hy. Thus, either H is not a counterexample, so there exist
x1,T2 € Sp,,(q) such that H N H* N H*2 < Z(GSp,,,(¢)), or H < GSp,y(q) with ¢ € {2,3,5}.
The latter was discussed at the beginning of the proof. Assume the former holds. Let

10—10\ (1001\|
0110 O 0 1100
Y=Inp® ko 0] 1 o) 2 2= dnp @ ko 11 o}'

0110 1 0 01]0 1

It is routine to check that y, z € Sp,,(q, fz). Denote (V;)y by W; and (V;)z by U; for i = 1,2. We
claim that if g € SN S@1®RL)Y N §(#2812)2 then ¢ stabilises V;, i = 1, 2. Assume the opposite, so
(Vi)g = (Va). Therefore, (W1)g = Wa and (Uy)g = Us. Thus,

VinWi)g = (Vi)gn (Wi)g = (Va2 Wa)

and
(VinUi)g = (Vi)gN(Ur)g = (Va N U2).
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Notice that (Vi NW7) = (Vi NUy) but (VoNWa) # (VoNUs) which is a contradiction. Therefore,
g = diaglg1, g2] where g; € H;. Also, g = hY where h € Sv7' N §@®) and g = t* where
t e 5% N S@2®n) Tt is routine to check, using arguments as above, that h = diag[h1, ha] with
h; € It[z»x1 and t = diag[tl,tg] with t; € Hz-xz.

Now calculations as in Case (1.1) show that

haay hagz | O 0 tan ta2)
0 hagy| O 0 ta)

0
g_ko 0 [ h@y o)—ko 0 [t t(m)}
0 0 h(273) h(2’4) 0 0 0 t(274)

fOI‘ some h(%]),t(l,]) S GLm/Q(q) with

h(i,1) = he); ta,1) = t2,4)
h(1,4) = h2,4); t1,a) = t2)-
(9(1,1) 9(1,2)

0 0
0 ga1 0 0\, _ (91,1 912 ). _ (91,1 0
9= k 00 gay O ) "= ( v 9E1,1§>’ = ( 0 9(1,1>>
0 0 9(1,1)
with g; € H;NH;'NH;?. Since HiNH{'NH? < Z(GSp,,(q)), we obtain g1 = g2 € Z(GSp,,,(q))
and g € Z(GSp,,(q))-

Case 2. Let H; be Stabg(V;)|,. < GLy(q). Thus, by Theorem 2.11, either H; < GLy(q) with
q € {2,3,5} or there exist z1, 22 € GLy,(q) such that Hy N H{* N Hy? < Z(GLy,(¢)). In the first
case the theorem is verified by computation, so assume that the second case holds.

Fix B to be a basis of V' as in (2.4) with (fi,..., fm) = V1 and (e1,...,en) = Vo. Let y
be I, ® (§ 7') . and let X; be diag|z;, (z;1)T] for i = 1,2. Notice that y, X1, X2 € Sp,(g, f5).
Consider g € SN SX1W N SX2. By Lemma 2.16, g = diag[gi, g1] with g1 € Hy N H{' N HY?, so
g € Z(GLn(q)) N GSp,(q) = Z(GSp,(q))- 0

4. GENERAL CASE: UNITARY GROUPS

As we mentioned in the introduction, it so more convenient to work with I'U,(q) instead
of PT'U,,(¢) to prove Theorem B1l. So, in this section S is a maximal solvable subgroup of
I'Un(q) = GUy(q) % (¢3) where (3 is an orthonormal basis of (V, f). Our goal is to prove Theorem
B1 which we reformulate in the following equivalent way.

Theorem Bl. Let n > 3 and (n,q) is not (3,2). If S is a mazimal solvable subgroup of I'Uy(q),
then one of the following holds:
(1) bs(S - SU(g)) < 4, 50 Regs(S -SUn(g),5) > 5;
(2) (n,q) = (5,2) and S is the stabiliser in T'Uy(q) of a totally isotropic 1-dimensional
subspace of the natural module, bg(S - SUy(q)) =5 and Regg(S - SU,(q),5) > 5.

Recall that gf = (g")~! for g € GL,(q%), see the discussion after Definition 2.3 for details.
To prove Theorem B1, we need the following lemma.

Lemma 4.1. Let (n,q,u) be such that GL,(q") is not solvable and (n,q,u) # (2,
an irreducible mazximal solvable subgroup of GL,(q"), then there exist x,y € SLy(

5,1). If S is
") such that

SNS*N (ST < Z(GL,(q¢%)).
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Proof. If bg(S - SLy,(¢")) = 2, then there exists € SL,,(¢") such that
SNS* < Z(GL,(q")),

so y can be arbitrary. Therefore, it suffices to consider cases (1)—(6) from Theorem 2.11 only.
In cases (1), (2) and (5), S is the normaliser of a Singer cycle, so S - SL,,(¢") = GL,,(¢"). Since
all Singer cycles are conjugate in GL,(¢%), ST = S9 for some g € GL,(¢"), so the statement
follows by Theorem 2.11. In cases (3) and (6) we have ST = S, so the statement follows since
bs(S - SL,(q)) < 3 by Theorem 2.11. In case (4) the statement is verified by computation. O

Lemma 4.2. Theorem B1 holds for n = 3.

Proof. If S stabilises no non-zero proper subspace of V', then the statement follows by [12,
Theorem 1.1].

Assume that S stabilises U < V and S stabilises no non-zero proper subspace of U, so U is
either totally isotropic or non-degenerate.

If U is totally isotropic, then dimU = 1 since a maximal totally isotropic subspace of a
non-degenerate unitary space of dimension n has dimension [n/2]. By Lemma 2.8, there exists
a basis § = {f,v,e} such that f5 is the permutation matrix for the permutation (1,3) and all
elements in Sg have shape @’ g with

f

Oél * *
g = 0 a9 *
0 0 a7

where 7 € {0,1,...,2f — 1}, a; € IFZQ and agH = 1. Let n be a generator of FZQ. For ¢ even let
§ =1, for g odd let § = 5~ (@+1/2 50 § .6t = 5179 = —1. The matrix = = diag(sT, 1,6)fg lies in
SUs(q, f3). It is routine to check that if ¢ € SgN S§, then ¢ = &g with g = diag(a{,ag,al).
Let a € Fp2 be such that o + a? = 1. Tt exists by Lemma 2.14. Let 6 € F2 be 791 and let
y,z € SUs(q, f3) be
1 00 1 00
~-1 1 0] and [—671 1 0
—a 1 1 —a 0 1
respectively. If ¢ € Sg N SEN Sg, then ¢ stabilises (e)y = (e + v — af), so a1 = a2 and
o =q¢ aqls. If p € SsN S5 N Sg N S%, then ¢ stabilises (e)z = (e + v — af), so 0" oy = fa.
Thus, 67 ~! = 1 and j = 0 by Lemma 2.15, so ¢ € Z(GUs(q)).

Assume U is non-degenerate, so S stabilises UL and we can assume that dimU = 1. Let
B = {f,e,v}, where {f,e} is a basis of U as in (2.3) and U = (v). Let z,y,z € SU3(q, f3) be

1 00 1 —a 1 1 0 0
—a 1 1,0 1 0] and |—a 1 67!
-1 0 1 0 —1 1 -6 0 1

respectively. If ¢ € Sg N SENSENSE, then ¢ stabilises (v), (v— f), (v —e) and (v —0f).
Arguments as in the previous case show that ¢ € Z(GUs(q)). O

Recall that ¢ = p/ where p is a prime and f is a positive integer.
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Lemma 4.3. Let (n,q) be such that GU,(q) is not solvable. Let S be a mazimal solvable
subgroup of TU,(q) and let M = SN GU,(q). If S stabilises no non-zero proper subspace of V,
then either M lie in an irreducible solvable subgroup of GU,(q) or there exist y,z € SU,(q) such
that M (MY 0 M* < Z(GU,(q)).

Proof. If M < GU,(q) is irreducible, then such y, z exist by Theorem 3.21. Assume that M is
reducible. Hence there exists 0 < Uy < V of dimension m such that (U;)M = U; and Uj is
F,2[M]-irreducible. Let ¢ € S be such that My is a generator of S/M, so [M¢| = |S: M| =r.
Let U; = Uyp*~! for i € {1,...,r}. By Lemma 2.5, M is completely reducible stabilising each

subspace of the decomposition
V=U®&®...0Uy, k:n/m.

In particular, ¢ permutes the U; cyclically and & divides |S : M|.

If m =1, then M is abelian and the lemma follows by Theorem 2.10. So further we assume
m > 2. Let us fix ¢ and consider a minimal counterexample (n,.S). So n is the smallest integer
such that GU,(q) is not solvable and I'U,(¢) has a maximal solvable subgroup S stabilising no
non-zero proper subspaces of V, M = SN GU,(q) is reducible and bys(M - SU,(q)) > 3.

If V is Fj2[M]-homogeneous, then M stabilises each of the V; in a decomposition V' = Vi @
... @V} as in Lemma 2.6 and all the V; are irreducible F2[M]-submodules of V' by [1, (5.2) and
(5.3)]. Let M; be the restriction of M on V;.

First, assume that the V; are non-degenerate, so each M; is a solvable irreducible subgroup
of GUp,(q). Let B; be an orthonormal basis of V; and 8 = UF_, 8. If GU,,(q) is solvable, then
M lies in GU,,(q) ¢ Sym(k) and the lemma follows by Lemma 3.20. If M; is a subgroup of S
as in (1) or (2) of Theorem 3.21, then k = 2 since k < |S : M| and ¢ is a prime. So (n,q) is
either (4,5) or (8,2). In this case, the lemma is verified using computations. Otherwise, there
exist y1,21 € SU(V4) such that My N M{* N M7+ < Z(GU(W)). Let y = diagly, Im, - - -, I) and
z = diag[z1, Im, . . ., Im] with respect to 3, so y, z € SU,(q). Then the restriction of MNMYNM*
on Vi is MiN MY N M7t < Z(GU(V4)). So MNMYNM?* < Z(GU,(q)) since M is homogeneous.

Now let the V; be totally isotropic, so each M; is a solvable irreducible subgroup of GL,,(¢?).
Hence there exist y1,21 € SL(V;) such that M; N M{' N M;* < Z(GL(V1)) by Theorem
2.11. Let {fi1,...,fm} and {e1,...,en} be the bases of Vi and Va2 respectively such that
B1 = {f1, s fm.€1,--.,em} is a basis of V; @ V5 as in (2.3). Hence, if g is an element of
the restriction of M on Vi @ V3, then g = diag[gl,gir]. Let 32 be a basis of (V; @ V5)* and let
B=p31UpBs. Let y = [yl,yi, In_om] and z = [z, zir, In_om], so y, z € SU,(q, fg). Then the restric-
tion of M N MY N M? on Vq is My N MY N M7 < Z(GL(V4)). So M N MY N M? < Z(GUy(q))
since M is homogeneous.

Now assume that V' is not I 2[M]-homogeneous, so, by Lemma 2.6, S stabilises a decompo-
sition of V.=V @ ... @ V} as in Lemma 2.6 and all the V; are F 2 [M]-submodules of V.

First, assume that & = 2 and the V; are totally isotropic. Hence there exist y1, 21 € SL(V7)
such that My N M{' N M;* < Z(GL(V1)) by Theorem 2.11 and Lemma 2.12. Let {f1,..., fm}
and {ej,...,en} be the bases of Vi and V5 respectively such that 8 = {f1,..., fm,€1,---,em}
is a basis of V' =V @ V5 as in (2.3). Hence, if g is an element of M, then g = diag[gl,gir] with
respect to 5. Now y, z € SU,(q, f3) such that M N MY N M* < Z(GU,(q)) exist by the proof of
Lemma 3.19.
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Now assume that either k£ > 2 and the V; are non-degenerate or k > 4 and the V; are totally
isotropic. Hence S stabilises the decomposition (and M stabilises each of its summands)

V:W1J_J_Wt

where ¢t = k and W; = V; if the V; are non-degenerate and ¢ = k/2 and W; = Vo1 @ Vg
otherwise. Since S stabilises no non-zero proper subspaces of V', the stabiliser of W; in S
induces a subgroup S; < I'U,, ;(q) that stabilises no non-zero proper subspaces of W;. Let M; be
SiNGU, (q). Since (n, S) is a minimal counterexample, either M; lies in an irreducible solvable
subgroup of GU,, /;(q) or there exist y;, 2; € SU,,/;(q) such that

M; N MY M < Z(GU, 54(q)). (4.1)

If GU,,(q) is solvable, then M lies in GUp,(q) ¢ Sym(k) and the lemma follows by Lemma 3.20.
If M, is a subgroup of S as in (1) or (2) of Theorem 3.21, then k = 2 since k < |S : M| and ¢
is a prime. So (n,q) is either (4,5) or (8,2). In this case, the lemma is verified by computation.
So, by Theorem 3.21, we can assume that there exist y;, z; € SUn/t(q) such that (4.1) holds.

Let D be the subgroup of all diagonal with respect to an orthonormal basis matrices in GUy(q).
As we noted before, if ¢ is prime, then £ = 2. Hence F(GU(q)) = Z(GU(q)) unless t = k = 2
and g € {2,3}. If this is not a case, then, by Theorem 2.10, there exists a € SU;(g) such that
DN D* < Z(GU(q)) and S is not a counterexample by Lemma 3.18.

Finally, assume that t = k = 2 and ¢ € {2,3}, so m > 2 as otherwise GU, /,(q) is solvable
and the lemma follows by Lemma 3.20. Denote y = diag[y:,y2] and z = diag[z1, z2]. Let
Bi = {fixs-- flimy2) Tir€i1s- -5 €imyo} for i € {1,2} be a basis for V; as in (2.3) and let
8 = B1Ups. Here the underlined part is present if m is odd and absent otherwise. Let a € GL,(¢?)
be such that

(frj)a= fij+ fo; for j€{1,...,[m/2]}
(eg,j)a = —e1jt+ez; for j € {1, RN [m/Q]}
and a stabilises all remaining vectors in (. It is routine to check that a € SU,(q). We claim that

M N MY N M?* < Z(GU,(q)). For simplicity, we consider the case when m is even; the case of
odd m is fully analogous. Here

L2 0 Ly 0O
_ 0 L2 0 0
“W=1 o0 0  Lnp O
0 —Ipyp 0 Iy
Consider h € M N M¥Y®. Hence h = g® for some g € MY. So g has shape

gin g2 0 O

gi3 gia 0 O
0 0 g1 g2
0 0 g23 g2

with g;; € M, (g*). Therefore,

g1 912+ 922 g11 —go1 —go2
0
h = g% = g13 914 913 4.9
g 0 —g22 921 922 ( )
913 914 — 924 913+ 923 g4
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and, since h € M, we obtain that g13 = goo = 0, g11 = ¢go1 and gi14 = go4. In particular, it is
easy to see now that g = g € MY. Assume, in addition, that h € M?, so h = diag[hq, ha] where
h; € M; N M N M < Z(GUp,(q)). Note that hy = hy since h has shape (4.2) with g11 = go1,
so h € Z(GUy(q)) and the claim follows. Hence S not a counterexample. O

Theorem 4.4. Theorem Bl holds for n > 4 if S stabilises no non-zero proper subspace of V.

Proof. The result follows by [12, Theorem 1.1] unless n = 4 and S lies in a maximal subgroup
of type Spy(¢) as in [12, Table 1]. We now consider this outstanding case.

Let n = 4 and M = SN GU,(q). For ¢ < 4 the theorem is verified by computation, so
we assume ¢ > 5. If S stabilises a decomposition of V' as in Lemma 2.6, then the statement
follows by [12, Table 2]. Hence we can assume that if N < M is normal in S, then V' is F2[N]-
homogeneous. In particular, every characteristic abelian subgroup of M is cyclic by [33, Lemma
0.5].

Assume that M is reducible, so M stabilises non-zero W < V such that W is F[M]-
irreducible and W is either non-degenerate or totally isotropic. If V' is not I 2[M]-homogeneous,
then § stabilises a decomposition as in Lemma 2.6 which contradicts the assumption above, so V'
is IF 2 [M]-homogeneous. Therefore, if dim W = 1, then M is a group of scalars, so S/Z(GUy,(q))
is cyclic and bg(S - GU4(q)) < 2 by Theorem 2.10. Hence we may assume that dim W = 2 and
W is either totally isotropic or non-degenerate.

First assume that dim W = 2 and W is totally isotropic. By [1, (5.2)],

V=W, W,

where W; is a M-invariant submodule of V' isometric to W, so we can assume W7 = W. Let
B be a basis as in (2.3) corresponding to this decomposition of V. Let M; < GLa(q?) be
the restriction of M in W. By Theorem 2.11, since ¢ > 5, either there exists x; € SLa(¢?)
such that M; N M7' < Z(GLz(g?)) or M is a subgroup of the normaliser of a Singer cycle in
GLay(q?). If 21 as above exists, then M N M* < Z(GU,(q)) where x5 = diag[ml,xi], since V' is
F,[M]-homogeneous. Therefore, bs(S - SU4(g)) < 4 by Theorem 2.10.

Let M; be a subgroup of the normaliser of a Singer cycle in GLz(g?). Since M = M, it
has a maximal abelian normal subgroup A of index at most 2, which is also characteristic.
Hence V' is IF;2[A]-homogeneous and the dimension of an irreducible [F2[A]-submodule of V' is
odd by Lemma 3.6, so A is a group of scalars. So M is cyclic modulo scalars and we obtain
bs(S - SU4(q)) < 4 by applying Theorem 2.10 twice.

Now let us assume that either dim W = 2 and W is non-degenerate or M is irreducible (here
we let W =V, so dimW = 4). Let m = dim W. Since every characteristic abelian subgroup of
M is cyclic, M satisfies the conditions of [33, Corollary 1.4]. In particular, in the notation of
Lemma 3.2, the following hold:

(1) F=ET,Z=ENT and T = Cp(E);

(2) a Sylow subgroup of E is either cyclic of prime order or extra-special;

(3) there exists U < T of index at most 2 with U cyclic and characteristic in M, and

Cr(U) =U;

(4) EU = Cp(U) is characteristic in M.
Since U is characteristic in M, V is Fp2[U]-homogeneous, so, by Lemma 3.6, U is a group of
scalars, T = U and M = C = Cy(U). Let e be such that e = |E/Z|. Let 0 < L < W be an
F,2[EU]-submodule. By [33, Corollary 2.6],

m=e-dim L.
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Thus, e € {1,2,4}, so E is either cyclic or an extra-special 2-group. By the proof of (vii) and
(iz) of [33, Corollary 1.10], F = Cy(E/Z) and M/F is trivial for e = 1 and isomorphic to a
subgroup of Sp,(2) for e € {2,4}.

If e = 1, then F' = U is self-centralising (since the centraliser of the Fitting subgroup of a
solvable group lies in the Fitting subgroup) and W is [ [U]-irreducible by [33, Lemma 2.2],
which is a contradiction, since U is a group of scalars. Therefore, e € {2,4}.

If e = 4, then, by the proof of Lemma 3.10, M = M;-Z(GUy(q)) and M lies in the normaliser
of a symplectic-type subgroup of GUy(p') for some ¢t < f. Hence by (M - SUy(q)) < 2 for ¢ > 3
by [12, Table 2] and bg(S - SU4(q)) < 4 by Theorem 2.10. For ¢ < 3 the statement is verified by
computation.

Let e = 2. Therefore, |[M| = |U|- |E/Z|-|M/F| divides

(q+1) ¢ [Spy(2)] = 24(q +1).
So |S| divides 24(¢+ 1) - 2f and |S/Z(GUy(q))| divides 48 f. We claim that

~

Q((5-SUa(q)/2(GUa(q)),4) <1

where Q(G, ¢) is as in (2.10) and H = §/Z(GUy(q)). By Lemma 2.18, if x1,. ..,z represent
distinct G-classes such that Zle |z¥ N H| < Aand |2§| > B for all i € {1,...,k}, then

m

> laf] - for(wi)© < B - (A/B)".

i=1
We take A = 48f > |H| > % [2¥ N H|. For elements in PGUy(q) of prime order with
s = v(r) € {1,2,3} we use (2.12) as a lower bound for |z§’|. If + € H\PGUy4(q) has prime
order, then we use the corresponding bound for [z%| in [9, Corollary 3.49]. We take B to be the
smallest of these bounds for |z§|. For ¢ > 5, such A and B are sufficient to obtain

A~

Q((S-SU4(q)/Z(GU4(q)),4) < 1,
so bg(S - SUy(q)) < 4. O
Theorem 4.5. Theorem B1 holds for n > 4 if S stabilises a non-zero proper subspace of V.

Proof. The proof proceeds in two steps. In Step 1 we obtain three conjugates of S such that
elements of their intersection have shape ¢gg for some basis 5 of V' where g € GU,(q,fp) is
diagonal or has few non-zero entries not on the diagonal. In Step 2 we find a fourth conjugate
of S such that the intersection of the four is a group of scalars.

Step 1. Fix a basis $ of the unitary space (V,f) as in Lemma 2.8, so f3 is as in (2.7) and
elements of S take shape gZ)ég with ¢ as in (2.8) and j € {0,1,...,2f — 1}. We consider S as
a subgroup of I'U,, (¢, fg). Let M be S N GU,(q,fs). We obtain three conjugates of S such that
their intersection consists of elements q%g where g is diagonal with respect to 5.

Let ~; be as in Lemma 2.8. Observe that fgfggT = fg, so f3 € GU,(q,f3). Notice that
det(fg) = (—1)™+-*™ If % p; is odd, then one of the n,. is odd for some r € {1,...,k}. Let
§ be as in the proof of Lemma 4.2, so 667 = —1. Notice that

h=diag[ln, - In 1,0 Iny Tnoity - oo Ino1, 01ngy Iy -+ oy Iny ] € GU(g, £5)
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has determinant det(fg). In particular, z = hfg € SU,(q). It is easy to see that if g € M, so it
has shape (2.8), then

71(9) 0 0
* .
x* x (9
* * Ve+1(9) 0

9" =
cos 0 Y+1(9)

* e * ’yk(g)T 0
* .. * * *x ™ (g)Jf

Let ¢ € {2,3,5}. By Lemmas 2.12, 4.1, 3.21 and 4.3 there exist y;, 2; € SLy,,(¢?) fori =1,... .,k
and y;, z; € SUp,(¢) for i =k +1,...,k+ [ such that

Yi(M) N3 (M)¥ 0 (3(M)T)* < Z(GLy, (¢%)). (4.3)

Notice that ~;(M)" = ~;(M) for i = k+1,...,k + 1. Denote by y and z the block-diagonal
matrices

dlag[yia s aylvyk-i-la o Y+l Yy - - ayl] and

' : : (4.4)
diag(z], ..., 2, Zhgls - o 2l Zhs - - - 21)
respectively. It is routine to check that y, z € SU,(q, f3).
Therefore, if g € M N M?**, then g is the block-diagonal matrix
dlag[gL s ’g]'i.;)gk-i-lv sy Gk, Gk - - - 591]7 (45)

where g; € (M) N (y(M)")? for i = 1,... k1. Thus, if g € M N MY N M??, then g has shape
(4.5) where
gi € (M) N y(M)Y 0 (3:(M)1)* < Z(GLy,(¢%)) fori=1,....k+1.

So, by Lemma 2.9, we can assume that elements in v;(S) N ;(S)% N (7i(S)F)# have shape
#g; with g; € Z(GLy,(¢?)). Thus, if ¢ € SN SYNS*, then ¢ = ¢/g with g as in (4.5) and
gi € Z(GLy,(g%)). Denote SN .SYNS* by S and M NS by M.

If ¢ € {2,3,5}, then it may be that v ;(M) € {GUs(q), GU3(2),MU4(2)}. Recall that
MU, (q) is defined in Lemma 3.14. In view of Theorem 3.21, and since GU3(2), GU2(3) and

GUs(2) are solvable, elements yiy; and z;1; as in (4.3) do not exist. If there is more than one
such y4:(M), say

Vh+i1 (M)> s 7’7k’+iu(M)a
then we join them in pairs, and there is one such unpaired group if p is odd. Let Hy, Hy €
{GU2(q), GU3(2),MU4(2)} and let v; for j € {1,2} be the corresponding degree of H;, so
H; < GU,,(q). Let

H=H; x Hy = {diag[hl,hg] | hj € Hj} < GUV1+V2(q).

Computations show that
ba(H - SUy 40, (q)) < 3.



44 ANTON A. BAYKALOV

Therefore, we can assume that there is at most one such v;1,;(5), so u < 1. Denote the degree
of such yx4;(S) by v, so 2 < v < 4. Repeating the argument above for the rest of ~;(M) and
7i(S), we obtain that if ¢ € S, then ¢ = ¢/g with g as in (4.5) and either all g; € Z(GLy,,(¢%))
(if = 0) or all but one g; € Z(GLy,(¢?)) and one g; (for i > k) is a (v x v) matrix (if u = 1).

Remark 4.6. It may be that some 7;;(M) have degree 1, so yx+i(S) < I'Ui(g). We can treat
them together. Indeed, assume that vy;,;(M) has degree 1 for i = 1,...,( < [. Define 41’ :
S —T'U¢(q) by

Y1 (¢7g) = ¢’ diag(11(g), - -, ¢(9))
for g € M and j € {0,1,...,2f — 1}. Hence the group T = 7,41/ (M), consisting of diagonal
matrices, is an abelian subgroup of 7' - SU¢(q) = GU¢(q). If ¢ > 3, then by Theorem 2.10 there
exists g € SU¢(q) such that TNTY9 < F(GU¢(q)) = Z(GU¢(q)), where F(G) is the Fitting
subgroup of a finite group G. So (4.3) holds for v441'(M) and we can replace 71,. .., with
Yk+1' of degree (. Finally, suppose g < 3. Notice that

T x4 () < ((GU1(q) V2D 5 (GUs ()2 2 (9),

so if ¢ > 1, then S is not a maximal solvable subgroup of GU,(q) since GUz(q) is solvable.
Therefore, we can assume that there is at most one ~yx;(S) of degree 1 in every case, so { < 1.

We summarise the outcome of Step 1. Let p be the number of i € {1,...,l} such that
Yi+i(M) is a subgroup of one of the groups GUa(q) for ¢ € {2,3,5}, GU3(2) or MU4(2). We
may assume g € {0,1}. In particular, yp = 0 if ¢ > 3. There exist z,y € GU,(q) such that if
peS=5N8"NSY, then ¢ = ¢/g with g as in (4.5) and either all g; € Z(GLy,,(¢?)) (if x = 0)
or all but one g; € Z(GLy,(¢?)) and one g; (for i > k) is a (v x v) matrix (if 4 = 1). Notice that
v is 2, 3, or 4 if the corresponding vi+;(M) is GUa(q), GU3(2) and MUy4(2) respectively.

Step 2. We now find a fourth conjugate of S such that its intersection with S lies in Z(GU,(q)).
Let ¢ be an element of S.

Assume that S is such that g = 0. First we slightly modify the basis 8 from the first step.
Recall that 3 is such that f3 is as in (2.7). Therefore,

5:{fll"‘"f#,l’""ff?"‘?f'rl:k?

1 1 l !
Tlseeo s Tpprgs s Tl Ty s
k k 1 1
€15y €y €Lyt

where (eg , fij ) = 1 and every other pair of vectors from [ is mutually orthogonal. Let

Uy = (zb,..., 2" ), i=1,...,1;
= vt . (4.6)
Wi=(fl,.- s fa, €l sen), i=1,... k.

Thus,
V=W, L...1W,)L(U,L... L),

where W;, U; are S-invariant subspaces and Yi+i(S) < TU;) for i = 1,...,1. By Lemma 2.1,
we can choose for U; the basis

By = {ff"”, - T";Lji,efnti, . ,e]f'”}, if ngpy; = 2my; (47)
' {f{{:+17"'7 ﬁ{l’l,xk+2 €k+l 761{:—'—1}7 if Nk4i = sz + 1.

»Ymy; o
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By the first step
i (M) < Z(GUU)),
so, by Lemmas 2.7 and 2.9, v;(¢) = q%ligi with g; € Z(GU(U;)).
Now we renumber the basis vectors of the W; from (4.6) and basis vectors of the U; from (4.7)
to obtain the basis

Bi=Af1,- s fms @1y s Tty €y oy €1 )
where m = (Zle ny + 25:1 ml) and t is the number of odd ngy; for ¢ = 1,...,l. In more
detail, to obtain 81 from (3, we apply the following procedure:
e replace bases of U; as in (4.6) by those as in (4.7), denote new basis by 3 3;
e rearrange vectors as follows: first write down the f; in the order they occur in 3, then
do the same with the z* and then write the e} in the order opposite to the f]’ (so if f; is

the t-th entry of 3,3, then eé» is the (n —t + 1)-th entry of 3;/3). Denote new basis by
52/3;

e relabel the f-vectors with just one index in the order they occur, do the same with the
x-vectors and label the e-vectors such that (f;,e;) = 1.

We illustrate this procedure in the following example.
Example 4.7. Let k =2,1=2,n1 =1, no =2, n3g =2 and ng = 3. So
Ul = <x%7x%> = < §7eil’>>

551@2@3) <f1,934,6411>

2
f17f2761a62>

and
ﬂ = {fllaf127f227x%ax%ax%ax%x%ve%ve%ve%}'
Hence
4 2 2 1
513_{f17f17f2> 17617f17$ €1,€1,€2,€1
/
and

B2/3 = {flla f12a f227 f?v f{lyx47 6%7 6?, 637 6%7 6%}
The relabelling is
52/3 :{ fllv f127 f227 ffv f{lv .T4, 64117 6?7 6%, 6%7 6% }
! T A (4.8)
Bl :{ fl) f?) f3) f4) f5) X1, €5, €4, €3, €2, €1 }

We now resume the proof of Theorem 4.5. Notice that ¢ € 5’51 has shape (¢g, )’ g with g as
in (4.5) and g; € Z(GLy,(¢?)). For simplicity we omit the subscripts and consider S and S as
subgroups in I'U,,(q, f3,). Let ¢’g € S, so

g= diag(al,...,all,él, ey Oty Qe ey 01). (4.9)
If

U‘ _ {<fs7"'7f8+mi768+mi7"‘768>7 fOI' Nkg+i = 2mi)
P =

(fsy -y fstmss Try €stmys - - -5 €5),  for ng; =2m; + 1,
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then oy = ... = @gym,; = 9, and 9™ = 1 since g is scalar on each U; by the first step. If
Wz‘: <f5,...,fs+ni,€s+ni,...,€s>, (410)

then ag = ... = a4y, since g is scalar on (€stp,, ..., es) by the first step.

Remark 4.8. If a; = a;r = fori =1,...,m, then g is not scalar if and only if ( = 1 in Remark

4.6. So, if there exists v,(S) of degree 1, then we can assume, without loss of generality, that d;
is the corresponding entry (so vs(S) acts on (z1)). Therefore, if o; = ozl.L =d§ fori=1,...,m,

then g = 011, € Z(GU,(q,f3,)).

The remainder of our proof of Step 2 splits into 3 cases:
Case 1. u=0, k> 0;
Case 2. u=0, k=0;
Case 3. p=1.
Each case splits into two or three subcases depending on other parameters. Our consideration
of the subcases mostly follows the same pattern, so we omit details in some of them. Detailed
proofs for each subcase can be found in [4]. In Cases 1 and 2 we show bg(S - SU,(q)) < 4.
In Case 3 we show bg(S - SU,(q)) < 4 unless n is small (¢ € {2,3,5} here since u = 1). For
small n the statement of Theorem Bl is verified by computation; we identify these values of n
in Case 3.

Case 1. Let p =0 and k > 0. So there is a totally singular S-invariant subspace

VY1 = <€1, .. -7€n1>-
Recall that n; is the degree of ;(S) for i € {1,...,k+1}. Let a € F2 be such that a + a9 =1,
it exists by Lemma 2.14.
The three subcases we consider correspond to the following situations:
Case (1.1) dimW; =2 for W; in (4.6) and ¢t = 1,... k;
Case (1.2) Condition of Case (1.1) does not hold and | = 0;
Case (1.3) Condition of Case (1.1) does not hold and I > 0.

Case (1.1). Assume that dim W; = 2 for W; in (4.6) and i = 1,..., k. Let 1 be a generator
of F, and let 6 = 791, We redefine y from (4.4) to

diag[AT, Ykt1y - - > Yl Al

where
1 0 0 0
0O 1 0 0
A= .
0O ... 0 1 0
1 ... ... 1 1

It is easy to see that y € SU,(q,fg). Let =,z € SU,(q, fs,) be as in Step 1, so ¢ € S has shape
#'g with g as in (4.9). Since S stabilises (e1), SY stabilises (e1)y = (e1 + ... + ex). Therefore,

(en)y)p=(e1+...+ep)lg=caier +...+agep, = Ae1+ ... +ex)

for some )\EFZQ, SO =...= Q.
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Let k > 2. We claim that there exists a € SU,(q, fg, ) such that

(e1)a :Zei +0ex +e1+x1 —af; (fi)a= fi;

=3
(e2)a = e2; (fo)a= fo— 071 f1; (4.11)
(ei)a = e (fi)a= fi — f1; i€{3,...,m}

(r1)a = 21 — fi,

and a stabilises all other vectors from (1. Here the underlined part is in the formula only if
¢ =1 and z; is as in Remark 4.8. In other words, if ngy; > 1 for all e = 1,...,, then we omit
the underlined part. It is routine to check that det(a) = 1 and a is an isometry of (V,f), so
a € SU,(q, f3,).

We claim that SN S® < Z(GU,(q)). Let ¢ = ¢/g € SN S?, where g is as in (4.9). Observe
that S stabilises (e1), so S® stabilises (e;)a. Therefore,

i
Yoitaage; + 0P asep + aqer + 11 — on{afl

s (4.12)

((61)G)¢jg={
for some A\ € F ;2. Thus,
)\:al:0pj*1a2:o£:a3:...:am:51

and 07 ~1 =1,s0 j=0and ¢ = g € Z(GUy(q, f5)).

Let k = 1. We can assume that ngq1 > 2. Indeed, if ngy; = 1 for all ¢ € {1,...,1}, then, by
Remark 4.6, 1 =1, so n = 3 and Theorem B1 follows by Lemma 4.2. Thus, (eq, fo) € U; and

g = on We claim that there exists a € SU,(q, f3,) such that

(el)a = Zei +0es+e1+ fo—0f1 +x1 — afi;

=3
(fi)a = fi;

(e2)a= ea — f1; (4.13)
(fa)a = fa —09f1;

(ei)a = e; i€ {3,...,m}

(fi)a = fi — f1; ie{3,...,m}

(r1)a= 21 — f1,

and a stabilises all other vectors from (1. Here the underlined part is in the formula only if { = 1
and 1 is as in Remark 4.8. It is routine to check that det(a) = 1 and a is an isometry of (V. f),
so a € SUy(q, f3,). The arguments similar to those after (4.11) show that SN S* < Z(GU,(q)).

Case (1.2). Assume that [ = 0 (so there is no U;) and there exists r € {1,...,k} such that
dim W, > 4. So

= (fsy--+s fstnn, €sy--+y€s4n,), for some s and n, > 2.
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In particular, oy = cvgy1. Let x = nl@t1/2 5o y +x9 =0 and x 9 = —x~'. We claim that there
exists a € SU,(q, f3,) such that

(es)a: fs +0fst1+ Z fi + xes; (fs)a:_xilfSQ
i¢{s,s+1}
(es—i—l)a = X€s+1 t+ eqfs; (fs+1)a = - X_lfs—i-l;
(ei)a= e+ X s (fi)a=fi for i # s.

It is routine to check that det(a) =1 and a is an isometry of (V,f), so a € SU,(q, f3,).
We claim that SN S% < Z(GUy(q)). Let ¢ = ¢'g € SNS?, where g is as in (4.9). Notice that
S stabilises E = (eq,...,en), so S stabilises Fa. Therefore,

((es)a)p = {

alfs + ijai+1fs+1 + Z?é{s,s+l} Oéjfz =+ ijases

(4.14)
m(er)a+ ...+ nm(em)a.

Since ((es)a)g does not have terms with e; for ¢ # s in the first line of (4.14), ((es)a)g = ns(es)a,
so . .
ns:ij_las:alzﬁpJ_laiH :ai :...:al_l :oc;rJrl =...=al, (4.15)

and 67’ =1 = 1. Hence j = 0 and o, = o} by (4.15), so g is scalar and SN S* < Z(GU,(q,f5,)).
Case (1.3). Assume [ > 0 and there exists i € {1,...,k} such that dim W; > 4. So
Wi = (fsy---, fs4n;s€ss- -+ €s4m,;), for some s and n; > 2.

In particular, ag = agy1. Let r =ng + ... + ng. We claim that there exists a € SU,(q, f3,) such
that

(eda=( Y e)+es+0fci+ Y fi+ (w1 —afy); (fs)a=fs;
1=r+1 i¢{s,s+1}
(es+1)a = esi1 — 01 fs; (fs+1)a =fs+1;
(ei)a= e — fs; (fi)a= fi forie {l,....,7}\{s,s +1}
(e;)a = e;; (fi)a= fi— fs; forie{r+1,...,m}

(r1)a = 21 — fs,

and a stabilises all other vectors from [3;. Here the underlined part is in the formula only if { =1
and z1 is as in Remark 4.8. It is routine to check that det(a) =1 and a is an isometry of (V. f),
so a € SU, (g, fs, ). The arguments similar to ones in Case (1.2) show that SN.S* < Z(GU,(q)).

Case 2. Let ¢ =0 and k£ = 0. So S stabilises no non-zero singular subspace. Choose U to be
one of the U; such that dim U = max;c(;,. ;3 {dim U;}. Therefore, V' = ULU* and (UY)S = U+,
Without loss of generality, we can assume that

U:Ul:<f1;---,fd,§7€d7--~,el>, (416)
where d = [dimU/2] and {z} = {x1,...,2:} NU. If dimU is even, then {z} is empty and we
read (4.16) without z. If dim U is odd, then we assume that z = x;. So

1
U :<fd+17"‘7fmn$17”'7x876m7”'7ed+1>)
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where s =t — 1 if dim U is odd and s = ¢ otherwise. Define x; as in Remark 4.8. Notice that if
#'g € 8, so g has shape (4.9), then oz;r = q; for i € {1,...,m} since g acts on U, containing e;
and f; as a scalar.

If dimU; = 1 for all ¢ = 1,...,l, then M is abelian and, by Theorem 2.10, there exists
y € SU,,(q) such that MNMY < Z(GU,(q)). Thus, (SNSY)/Z(GU,(q)) is an abelian subgroup of
(S-SU,(q))/Z(GU,(q)) and, by Theorem 2.10, there is z € SU,,(¢) such that (SNSY)N(SNSY)* =
Z(GL,(q)). So we can assume dim U > 2.

The two subcases we consider correspond to the following situations: when d = m and d < m
respectively.

Case (2.1). Let d=m, so V =U L{(x).
Assume d > 2, so a1 = ap. We claim that there exists a € SU,(q, fg,) such that
(e1)a = e1; (f)a=fi + (z1 — ae);
(e2)a = ea; (f2)a =fa+09(x1 — aey);
(r1)a = x1 — e1 — feq,
and a stabilises all other vectors from ;. It is routine to check that det(a) = 1 and a is an
isometry of (V,f), so a € SU,(q, f3,).
We claim that SN S% < Z(GUy(q)). Let p = ¢'g € SN S%, where g is as in (4.9). Observe
that S stabilises (x1), so S® stabilises (x1)a. Therefore,
((z1)a)p = d1z1 + arer + 0 agey = A((z1)a)

for some A\ € ]1?22. Hence A = 61 = a1 = Gpj_lag, g is scalar and 7 = 0 since a1 = a9. So
SN S* < Z(GUyu(g, £5,))-
Assume that d = 1, so dimU < 3. If dimU = 2, then n = 3 and this case is considered in
Lemma 4.2, so we may assume dim U = 3. We claim that there exists a € SU,(q, f3,) such that
(e1)a= e1+x1 —afi; (fi)a =afi — e — bx;
(z)a = 01 + 09al f1; (z1)a =e1 — afi +x1 + Oz.
It is routine to check that det(a) = 1 and a is an isometry of (V,f), so a € SU,(q,fs,). We

claim that SN S® < Z(GU,(q)). Let ¢ = ¢/g € SN 5%, where g is as in (4.9). Observe that S
stabilises (1), so S® stabilises (z1)a. Therefore,

(z1)a)p = arer — a” ay fi + b1zt + a1 + 07 are = A((21)a)
for some \ € F;z. Hence A\ = 61 = o1 = 9pj_1a1, g is scalar and j = 0. So Snse <
Z(GUp(g,£5,)).

Case (2.2). Let d < m.
Assume d > 2, so a1 = ap. We claim that there exists a € SU,, (g, fs,) such that

(e1)a = ( Z e;) +e1+ (v1 — afi);
i=d+1
(fi)a = fi;

(e2)a = ( Z Oe;) + ea;

i=d+1
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(f2)a = fa

(e;)a = ey for i € {3,...,d};
(fi)a= fi forie{3,...,d}
(e;)a = ey forie{d+1,...,m}
(fi)a= fi— f1—0%fa; forie{d+1,...,m};

(z1)a = = — fi,

and a stabilises all other vectors from fj. It is routine to check that det(a) = 1 and a is
an isometry of (V,f), so a € SU,(q,fs,). If d = 1, then let a € SU,(q,f3,) be defined by
(4.13). The arguments similar to ones in Case (2.1) applied to ((e1)a)p and ((e2)a)e show
that SN S < Z(GU,(q)).

Case 3. Let u=1,s0 ¢ € {2,3,5}. Without loss of generality, we can assume that v (M) €
{GUa(q),GU3(2),MUy4(2)}. Let {v1,...,v,} be an orthonormal basis of U, so 2 < v < 4. For
the remaining W; and U; we change basis as in (4.7), so

Br=A{f1, s [, @1y ooy T, V1, ooy Uy €y e ooy €1 ) (4.17)
and n = 2m + ¢ 4+ v. Denote ny + ...+ ny by r, so r < m. Notice that the subspace
E={e1,...,er)
is S-invariant. Let ¢ € S, so, by Step 1, ¢ = ¢’g with j € {0,1} and
(€i)g = aie; forie {1,...,m};
(fi)gzoz}fi forie{1,...,m};
(zi)g = diwi forie {1,...,t};

(vi)g = Xiwv1 + ...+ vy, forie {1,...,v},

for a, 0i, Nji € Fpe. Let a € FZQ be such that a+a? =1 and « ¢ F,. It is easy to verify existence
of such a for q € {2,3,5} by computation.

The three subcases we consider correspond to the following situations: when m =r >0, m >
r > 0, and m > r = 0 respectively. We exhibit a € SU,,(q, f,) such that SNS* < Z(GU,(q, f3,))
in each subcase. We provide detailed proof only for Case (3.3).

Case (3.1). Let m =r > 0,s0! < 2 and [ = 2 if and only if dimU; = 1, so ( = 1 and
Ui = (x1). If n > 3v + 1, then r > v (recall that 2 < v < 4). For smaller n, Theorem Bl is

verified by computation, so we assume r > v.
We claim that there exists a € SU,(q, f3,) such that

(er)a=)Y foter+(vi—afi)+a—afi; (fi)a=fi

s=2
(ei)a=e; — f1+ (vi — afi); (fi)a= fi; ie{2,...,v}
(ei)a =e; — f1; (fi)a = fi; ie{v+1,...,r}
(z1)a =1 — fi; (vi)a=wv;— fi; i€{l,...,v}

and a stabilises all other vectors in ;. Here the underlined part is in the formula only if ( =1
and z1 is as in Remark 4.8. It is routine to check that det(a) =1 and a is an isometry of (V. f),
so a € SU,(q, f3,). Moreover, SN S* < Z(GU,(q,fs,)).
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Case (3.2). Assume that m > r > 0. Recall 4 = 1 and Remark 4.6; thus, if v = 2, then
m > v for n > 6; if v € {3,4}, then m > v for n > 9. For smaller n, Theorem B1 is verified by
computation, so we assume m > v.

We claim that there exists a € SU,(q, f3,) such that

(e1)a = Z es+e1+ (v1 —afi) + (x1 — afi);

s=ni1+1
(fl)a:fla
(ei)a = e; + (vi — afi); i€{2,...,v}
(fi)a = fi; ie{2,...,v}
(e;)a = ej; ie{v+1,...,m}
(fi)a = fi = 8(isny) f1; ic{v+1,...,m}
(z1)a =21 — f1;
(vi)a = v — fi i€ {l,...,v}

and a stabilises all other vectors from [3;. Here the underlined part is in the formula only if { = 1
and z1 is as in Remark 4.8. It is routine to check that det(a) =1 and a is an isometry of (V. f),
so a € SU,(q,f3,). Moreover, SN S* < Z(GU,(q,fs,)).

Case (3.3). Assume that » = 0. Recall p = 1 and Remark 4.6; thus, if v is 2, 3 or 4, then
m > v for n > 6, 10 and 12 respectively. For smaller n, Theorem B1 is verified by computation,
so we assume m > v. Let U be one of {Uj,...,U;—1} with maximum dimension. So we can
assume

U=Ui=(f1,..., fa,2,€4,...,€1)
where d and z are defined as in (4.16).
Assume d = 1. We claim that there exists a € SU,(q, f3,) such that

m

(er)a=> es+alester+ fo—al fi+ (v1 —afi) + (z1 — afy); (fi)a = fi;
s=3
(e2)a = ez + (va — afa); (fo)a=fo—a ' fi;
(ei)a =€ +v; —afi+afi; (fi)a = fi — fr; i€ {3,... v}
(ei)a = e (fi)a = fi — fi; ie{v+1,...,m}
(z1)a =71 — f1; (vi)a = v; — fi; ief{l,...,v}

and a stabilises all other vectors from ;. Here the underlined part is in the formula only if { = 1
and z; is as in Remark 4.8. It is routine to check that det(a) =1 and a is an isometry of (V,f),
so a € SU,(q,fs,). We claim that SN S* < Z(GU,(q)). Let ¢ € SN S°.

Observe that S stabilises U, so S* stabilises Ua. Therefore,

m
D ases + (@ ageataner + anfy — ()P ar fi+
s=3

er1)a)p = - j i
((e1)a) +(Z ALiv;) — Oélap]fl) + 0121 — aia? 1f1
=1

(n(er)a + pri1(fre1) + Az
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Thus,
m=ar=ay= (W lay=a3=...=am =1 =&
{)\12—...—)\11,_0.
Hence o”’ =1 = 1 and j = 0. The same argument for ((e;)a)g with i = r 4+ 2,...,r + v shows

that Ajj = oy for i € {1,...,v} and A\;; = 0 for ¢ # j. Therefore, g is scalar by Remark 4.8.
Assume d > 2. We claim that there exists a € SU,(q, f3,) such that

(e1)a = Z es+e1+ (v —afi) + (1 — afi); (fi)a = fi;
s=d+1

(vi)a = v — f1 = fo;

(e2)a = ez +avy —afi +v2 —2- afa (f2)a = fo;

(Uz)a = vy — fo;

(ei)a = e; + v; — af; + di>qafu; (fi)a = fi = 6i>afi; ic{3,...,v}
(ei)a = e;; (fi)a = fi = disaf1; ie{v+1,...,m}
(r1)a = z1 — f1; (vi)a = v; — fi + 6i>af1; i€4{3,...,v}

and a stabilises all other vectors from (;. Here the underlined part is in the formula only if
¢ =1 and x; is as in Remark 4.8; §;~4 is 1 if ¢ > d and 0 otherwise. It is routine to check that
det(a) = 1 and a is an isometry of (V,f), so a € SU,(q, f5,). We claim that SNS* < Z(GU,(q)).
Let ¢ € SN S

Observe that S stabilises U, so S* stabilises Ua. Therefore, ((e1)a)y is

m 12
J J_—1
E ases + ajer + ( E Aivi) — oo fi + 6121 — o T fy
s—dt1 i=1

and
d d
((e1)a)p = Z niei)a + Zui(fi) + Az.

Since n;(e;)a for i > 1 has n; as a coefficient for e; with respect to 51 and ((e1)a)y has 0 as these
coefficients in the first line of the formula above, n; = 0 for all ¢ > 1. The same arguments for
pi; and A shows that A = 0 and p; = 0 for ¢ > 1. Thus,

A2 =...= A1, =0.
So g stabilises (v1) and its orthogonal complement (ve,...,v,) in (v1,...,v,). In particular

Ai1t =0 for i € {2,...,v}. Recall that a1 = ag, since d > 2. Consider

a1es + Ozpj A1 — Oépjalfl + (Zi”:2 )\21"1)2') -2 Ozloépjfl
S milei)a + 357 pa(fi) + Az

The same arguments as above show that

{O‘l = a” 1A = g

((e2)a)p = {

A23:...:A2V:O.
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Hence o’ ~! = 1 and j = 0. The same argument for ((e;)a)g with i = 3,...,v shows that
Nii = aq fori e {1,...,v} and \;; = 0 for ¢ # j. Therefore, g is scalar and SNS* < Z(GU,(q)).

Hence in all cases there exist four conjugates of S in G which intersect in a group of scalars,
except when
(n,q) = (5,2) with k=1=1,n; =1,n9 = 3.
Here bg(S - SU,(q)) = 5 and Regg(S - GU,(q),5) > 5 are verified by computation. This already
arises in Case (3.1). This concludes the proof of Theorem 4.5. O

Theorem B1 now follows by Lemma 4.2 and Theorems 4.4 and 4.5.

5. GENERAL CASE: SYMPLECTIC GROUPS

We prove Theorems C1 and C2 in Sections 5.1 and 5.2 respectively.

5.1. Solvable subgroups contained in I'Sp, (¢). As we mentioned in the introduction, it so
more convenient to work with I'Sp,,(¢) instead of PI'Sp,,(¢) to prove Theorem C1. So, in this
section S is a maximal solvable subgroup of I'Sp,,(¢) where n > 4. Our goal is to prove Theorem
C1 which we reformulate in the following equivalent way.

Theorem C1. Letn > 4. If S is a maximal solvable subgroup of I'Sp,,(q), then bs(S-Sp,,(q)) <
47 $0 Regs’(s ’ Spn(q)7 5) > 5.

If (n,q) = (4,2), then Theorem C1 is verified by computation.

Lemma 5.1. Let Let n > 2 and ¢ = pf where p is prime and f > 1. Denote M = SN GSp,,(q).
If S stabilises no non-zero proper subspace of V', then there exist y,z € Sp,,(q) such that M N
MY N M* < Z(GSp,(q))-

Proof. If M < GSp,,(¢) is irreducible, then such y, z exist by Theorem 3.22.

Assume that M is reducible. Hence there exists 0 < U; < V of dimension m such that
(U1)M = U, and U, is Fy[M]-irreducible. Let ¢ € S be such that My is a generator of S/M,
so |Mg| =|S: M| =r. Let U; = Uyp'! for i € {1,...,r}. By Lemma 2.5, M is completely
reducible stabilising each subspace of the decomposition

V=U®...0 Uy, k::n/m.

In particular, ¢ permutes the U; cyclically and k divides |S : M]|.

If m =1, then M is abelian and the lemma follows by Theorem 2.10. So further we assume
m > 2. Let us fix ¢ and consider a minimal counterexample (n,.S). So n is the smallest integer
such that GSp,,(¢) is not solvable and I'Sp,,(¢) has a maximal solvable subgroup S stabilising
no non-zero proper subspaces of V., M = S N GSp,,(q) is reducible and by;(M - Sp,,(q)) > 3.

If V' is F,[M]-homogeneous, then M stabilises each of the V; in a decomposition V = V| &
... @ Vj as in Lemma 2.6 and all the V; are irreducible F,[M]-submodules of V' by [1, (5.2) and
(5.3)]. Let H; be the restriction of M on V;. The lemma now follows by the proof of Theorem
3.22.

Now assume that V' is not F,[M]-homogeneous, so, by Lemma 2.6, S stabilises a decomposition
of V=Vi&...8V; as in Lemma 2.6 and all the V; are F,[M]-submodules of V.

First, assume that £ = 2 and the V; are totally isotropic. Hence there exist y;, 21 € SL(V7)
such that Hy N HY' N H* < Z(GL(V1)) by Theorem 2.11 and Lemma 2.12. Now y,z € Sp,,(¢)
such that M N MY N M* < Z(GSp,,(q)) exist by the proof of Theorem 3.22 (Case 2).
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Now assume that either k£ > 2 and the V; are non-degenerate or k > 4 and the V; are totally
isotropic. Hence S stabilises the decomposition (and M stabilises each of its summands)

V:W1J_J_Wt

where t = k and W; = V; if the V; are non-degenerate and ¢t = k/2 and W; = Va;_1 @ Vs, otherwise.
Since S stabilises no non-zero proper subspaces of V', the stabiliser of W; in S induces a subgroup
S; < T'Sp,/.(q) that stabilises no non-zero proper subspaces of W;. Let H; be S; N GSp,, /,(q).
Note that since f > 1, the situation where n/t = 2 and ¢ € {2,3,5} is not possible. So, by
Theorem 3.22 and since (n,S) is a minimal counterexample, there exist y;, z; € Sp,,(¢) such
that
H;NH}" N H < Z(GSp,,4(q))-

Hence y, z € Sp,,(q) such that M N MY N M* < Z(GSp,,(q)) exist by the proof of Theorem 3.22
(Case 1). O

Theorem 5.2. Theorem C1 holds if S stabilises no non-zero proper subspaces of V.

Proof. If f =1, then the theorem follows by Theorem 3.22, so we assume f > 1. It follows by
[12, Theorem 1.1] unless S lies in a maximal subgroup H of S - Sp,,(¢) such that the action of
S - Spy(g) on right cosets of H is a standard action. Hence one of the following holds (see [12,
Definition 2.1] and [12, Table 1]):

(a) ¢ =2/ and H is of type O%(q);

(b) n =4 and H is the stabiliser of a decomposition V' = V; LV, with non-degenerate V; of
dimension 2;

(¢) n = 4 and H is the normaliser in I'Sp,(q) of a field extension of the field of scalar
matrices.

First, assume that (a) holds, so ¢ = 2/ with f > 1 and H is a group of semisimilarities of V'
with respect to a non-degenerate quadratic form @ : V' — V. Let fg be defined by

fo(u,v) = Q(u+v) — Qu) — Q(v) for all u,v € V. (5.1)
By [30, Table 4.8.A], fg = f. By [30, Proposition 2.5.3], there exists a basis
ﬂ: {fl,...,fm,el,...,em}

as in Lemma 2.2 such that
o if e =+, then Q(f;) = Q(e;) =0 fori e {l,...,m};
o if e =—, then Q(f;) =Q(e;) =0forie{l,...,m—1}, Q(fm) = i and Q(e,,) = 1.

Here p € IFy, is such that the polynomial 22 + & + p is irreducible over F,.
By Theorem 3.22, there exist =,y € Sp,,(¢) such that

SN S*NSYNGSp,(q) < Z(GSp,(q))-

Therefore, by Lemma 2.9, we may assume that if ¢ € SN.S®NSY, then p = (¢g)’ - A, for some
A€y and j€{0,1,...,f—1}.
Let 6 be a generator of Iy and let 2 € Sp,,(¢) be defined as follows:
(e1)z =e1 +0f1; (f1)z = fy;
(ei)z = ei; (fi)z=fi fori € {2,...,m}.

Notice that H? consists of semisimilarities of V' with respect to the quadratic form (); defined
by the rule Q1(v) = Q((v)z~!) for all v € V. Let us show that if ¢ € SN S*NSY is not a scalar,
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then it is not a semisimilarity with respect to Q1. Indeed, if ¢ is a semisimilarity with respect
to 1, then

Q1((ex +011)p) = 0Q1(e1 + 0f1)7 (5.2)
for some A € Fy and o € Aut(F;). Observe
Qiler +0f1) =Q((e1+0f1)z"") = Q(er) = 0.
On the other hand
Qu(e1+01)¢) = Qi(A(er + 0" f1))
= 2\2Qu(e1 + 67 f1)
= NQ((e1 +6” f1)z7")
= NQ((e1 +6f1)="" + (67 ~0)f)= ™)
= X’Q(er + ("~ 0)f1)
= X260 - 9).
The last equality is obtained using (5.1). Hence (5.2) holds only if j = 0 and ¢ is scalar.
Therefore, SN S*NSYNS* < Z(GSp,(q)).

Now assume that (b) holds, so S stabilises a decomposition V' = Vi LV, with V; = (e;, fi),
where 5 = {ey, f1, €2, fo} with e; and f; as in (2.4). Let y,z € Sp,(q) be as in Case 1b of the
proof of Theorem 3.22. Denote (V;)y and (V;)z by W; and U; respectively for i € {1,2}. Let
be a generator of F; and let a € Sp,(q, fs) be

1 0/0 O
0 116 0
6 0

00 :
0 1|10 61

Consider ¢ € SN SYNS*NS% s0 ¢ = ¢lg with j € {0,1,...,f — 1} and g € GSpy(q,fs) by
Lemma 2.7. By Case 1b of the proof of Theorem 3.22, ¢ stabilises V;, W; and U; for each
i. Therefore, ¢ stabilises (e1) = Vi N Uy, (fi) = Vi N W1, (ea) = Vo N Wy. So ¢ stabilises
(fi +e2) € (Vi)z and (f1 + Oez) C (Vi)a. Let (e1)g = Mer, (f1)g = Xaf1 and (e2)g = Azeq.
Therefore, (fi + e2)o = Xafi + Azea and Ao = A3. Also, (f1 + fez)p = Xofi + 0P Azea, s0
6P ~1 =1 and j = 0. In particular, SN SY N S*NS* < M N MY N M?. Therefore, ¢ is scalar
since M N MY N M* < Z(GSpy(q)) by Case 1b of the proof of Theorem 3.22.

Finally, assume that (c¢) holds, so S lies in the normaliser in I'Sp,(q) of a field extension of the
field of scalar matrices. Thus, S < R = GLa(¢?) x (¥) and M < GLa(¢?).2 = GLa(¢?) x ()
where 2 = ¢ and ¢/ € GSp4(q). For ¢ < 3 the theorem is verified by computation, so we
assume q > 4.

Assume that M lies in the normaliser in R of a Singer cycle of GLa(¢?). By [5, Lemma 3.12],
there exists © € SLa(q?) < Sp4(q) such that

SN 8% < GLa(q)2 < GSpy(a),
so SN S* < M. By Lemma 5.1, there exist y, z such that M N MY N M* < Z(GSpy(q)), so
(SN S™)NSYNS* < Z(GSpy(q))-
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Assume that M does not lie in the normaliser in R of a Singer cycle of GLa(¢?) and let
M; = M NGLy(q). By Theorem 2.11, there exists € SL(¢?) such that M; N M§ < Z(GLy4(q)).
Hence SN S* < Z(GLa(q?)) x (). Let N be SNS*. So [N/Z(GSp,(q))| divides (¢+1)-2f and

A =|N/Z(GSp4(q)) N PGSpy(q)| (5:3)
divides (¢ +1) - 2f.
We claim that Q((N - Sp,(q)/Z(GSps(q)),2) < 1 where Q(G,¢) is as in (2.10). Denote
N/Z(GSpy(q)) by H. By Lemma 2.18, if xj,...,x; represent distinct G-classes such that
SF 2SN H| < Aand 2| > Bforalli € {1,...,k}, then

m

S ] - for(es)® < B (A/BY

i=1
We take A as in (5.3) since A > |H|. The proof of Lemma 3.9 implies that v(g) > n/2 = 2
for ¢ € N N GSpy(q). For elements in PGSp,(q) of prime order with s = v(z) € {2,3} we
use (2.12) as a lower bound for |2¥|. If x € H\PGSp,(q) has prime order, then we use the
corresponding bound for |[z¢| in [9, Corollary 3.49]. We take B to be the smallest of these
bounds for |z&|. Such A and B are sufficient to obtain Q((N - Sp,(q)/Z(GSp,(q)),2) < 1 for
g > 4. Hence bg(S - SUy(q)) < 4. For ¢ = 4 the statement is verified by computation. O

Theorem 5.3. Theorem C1 holds for q & {2,3,5} if S stabilises a non-zero proper subspace of
V.

Proof. The proof proceeds in two steps. In Step 1 we obtain three conjugates of S such that
elements of their intersection have special shape. In Step 2 we find a fourth conjugate of S
such that the intersection of the four is a group of scalars.

Step 1. This is similar to the first step of the proof of Theorem Bl. Fix a basis 5 of (V,f)
as in Lemma 2.8, so f3 is as in (2.7) and elements of S take shape ¢’g with g as in (2.8) and
j€{0,1,..., f —1}. We consider S as a subgroup of I'Sp,, (¢, f3) and let M = SN GSp,(q, f3).
We obtain three conjugates of S such that their intersection consists of elements ¢/g where ¢ is
diagonal with respect to 5.
Let v; be as in Lemma 2.8. Let x be the matrix
Inl

I"k+1

Ink+l
_Ink:

_Inl
Observe that zfzz " = f3, so x € Sp,,(¢, fs). It is easy to see that if g € M, so it has shape (2.8),
then ¢g* has shape (5.6).

Therefore, by Theorem 2.11 and Lemmas 2.12, 4.1 and 5.1, there exist y;,z; € GLy,(q) for
i=1,....kand y;, 2 € Sp,,(q) for i € {k+1,...,k +1} such that

(M) 0 yi(M)¥ 0 (w(M)N)* < Z(GLy, () for i € {1,.... k};

yi(M) Ny (M) (i (M)% < Z(GLy, (q)) for i € {k+1,...,k+1}. (5:5)



BASE SIZES FOR FINITE UNITARY AND SYMPLECTIC GROUPS WITH SOLVABLE STABILISERS 57

71(9) 0

. Y%(9)

x| % %

Denote by y and z the block-diagonal matrices

diag[yi,---,y;f;,ykﬂ,-~-,yk+z,yk,--.,yl] and
diag[zi, . .,z,i,zkﬂ, ey 2l Zhoy o v ey 21

respectively. It is routine to check that y, z € Sp,,(q, f3).
Therefore, if g € M N M*?, then g is the block-diagonal matrix

dlag[T(g)gL ey T(g)g]-l;;agk-f-l, <oy 9k+15 Gk - - - agl]a

where g; € v;(M) N (v (M)V)% for i € {1,...,k +1}.
Thus, if g € M N MY N M*, then g has shape (5.8) where

gi € %i(M) Nyi(M)¥ 0 (7:(M)")* < Z(GLn,(q)) for i € {1,...,
9i € vi(M) Nyi(M)¥ N~ (M)* < Z(Sp,,(q)) for i € {k+1,.

In particular, g is

diag[T(g)a];Im, ... ,T(g)aLInk, i1 lngyys s Qgtdng s Ol - o

-1
7

where o; € Fy for i € {1,...,k + [} and oz;-[:a

(5.7)

(5.8)

k};
k1)

yanly, ], (5.9)

for i € {1,...,k}. By Lemma 2.9, we can

assume that elements in v;(S) N ~;(S)¥ N (7;(S)1)* for i < k and in v;(S) N;(S)¥ N (7i(S))*
for i > k have shape ¢’g; with g; € Z(GLy,(q)). Thus, if ¢ € SN SY N S, then p = d)%g with

g as in (5.9). Denote SN SY N S* by S.

Step 2. We now find a fourth conjugate of S such that its intersection with S lies in Z(GSp,,(¢)).

Recall that 3 is such that f3 is as in (2.7). Therefore,

B=0BanY.- - -UBar UBks1U...UBkpUBpyU...UBak,

where

5(1,1’) - {f{vhfﬁzl} for i € {177k}7
B2,y = {eﬁ,...,e;i} forie{1,...,k};

(5.10)

Bi={fi,..., fLi/Q,eil,...,eiLim} forie{k+1,....k+1},
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and ( ,L] , eg ) =1 for all 4,j. All other pairs of vectors from [ are orthogonal. For simplicity we
relabel vectors f7 in § in the order they appear in § using just one index, so f{ becomes
if j <k-+1;

ifj>k+1.

fizi e
Sl g izt /2040
We relabel the e{ such that (fi,e;) = 1.
If o € S, 50 ¢ = ¢/g with g as in (5.9), then let §; € F, be such that (e;)g = d;e; for
i€{l,...,n/2} (so d; is some a; from (5.9)). Let 6 be a generator of ;.

The remainder of the proof splits into two cases: when k& > 1 and k& = 0. In each we show
that bg(S - SU,(q)) < 4.

Case 1. Let k > 1. This step splits into two subcases. In the first n; =1 for all i € {1,...,k};
in the second there exists i € {1,...,k} such that n; > 2.

Case (1.1). Let n; =1 for all i € {1,...,k}. We redefine y in (5.7) to be
dlag[ATa Yk+15 -+ -5 Yk+1, A}

where
1 0 0 0
0 1 0 0
A= .
0O ... O 1 0
1 ... ... 1 1

It is easy to see that y € Sp,(q,f3). Let =,z € Sp,(¢,fs) be as in Step 1, so ¢ € S has shape
#'g with g as in (5.9). Since S stabilises (e1), SY stabilises (e1)y = (e1 + ... + ex). Therefore,

((e)y)p = (e1+... +er)p’g=are; + ... +aper = Aep + ... +ep)

for some A € Fy, so a1 = ... = ay.
Assume k > 2. Consider a € GLy,(g) such that
n/2
(61)a = Zei +e1 + 0es + fi; (fl)a = fi;
i=3
(e2)a = es; (f2)a= fa—0f1;
(ei)azei; (fi)a:fi_fl; ZE{S,,TL/Z}

It is routine to check that a is an isometry of (V,f), so we can consider a as an element of
Sp,(q, £5). We claim that SNS* < Z(GSp,,(q,f3)). Let ¢ = ¢?g € SNS®. Since S stabilises the
subspace (e1), S stabilises (e;)a. Therefore,

Z?:/fn_i,_l Siei + arer + 07 ares + 1(g)al fi

((e1)a)p = {

Aer)a
for some A € F,. Hence
ap = 0" oy = T(g)al =0m41 = ... = 0y
Therefore, 7 = 0, a1 = ... = a4 and o; = 7'(g)oz;f for all i, so ¢ is scalar and S NS¢ <

Z(GSpy(q, f3))-
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Assume k =1, so [ > 1 (otherwise n = 2) and {fa,e2} C Br11. In particular, if ¢ = ¢/g € S,
then (f2)g = (e2)g = ag. Consider a € GLy,(g) such that

n/2
(61)a=zei+€1+962+f2; (fi)a = fi;
=3
(e2)a = ez + f1; (f2)a = fo —0f1;
(ei)a = ej; (fda=fi—fi;  i€{3,...,n/2}.

It is routine to check that a is an isometry of (V. f), so we can consider a as an element of
Sp, (¢, f3). The arguments similar to ones for £ > 2 show that SN .S* < Z(GSp,,(q,f)).

Case (1.2). Denote r := Zle n;. Let n; > 2 for some i < k, so §s = d511 for some s < r.
Consider a € GL,(q) such that

n/2
(es)a=fs+0fsi+ D fites (fda=Tfs;
i¢{s,s+1}
(€s+1)a = esq1 + 0fs; (fs+1)a = fst1;
(e;)a =e; + fs; (fi)a = fi; i€ {3,....,n/2}\{s,s + 1}.

It is routine to check that a is an isometry of (V,f), so we can consider a as an element of
Sp, (¢, f3). The arguments similar to ones in Case (1.1) show that SN .S* < Z(GSp,(q, fz)).

Case 2. Let k = 0, so [ > 2. Denote s := n1/2. Hence {fs+1,es+1} C B2. In particular, if
©=¢’g €S, then (fs11)g = (es+1)g = ag. Consider a € GLy,(q) such that

n/2
(e1)a = Z ei+er+0fsii; (fi)a = fi;
i=s+1
(est1)a = esp1 + 0f1; (fsy1)a = fsr1 — f1;
(ei)a = e (fi)a= fi i€{2,...,n1/2}.
(ei)a = e (fi)a = fi — fa; te{s+2,...,n/2}.

It is routine to check that a is an isometry of (V,f), so we can consider a as an element of
Sp, (¢, f3). The arguments similar to ones in Case (1.1) show that SNS* < Z(GSp,,(q,f3)). O

We have now proved Theorem C1 for ¢ ¢ {2,3,5}.

Remark 5.4. Equation (5.5) does not always hold for ¢ € {2,3,5}. In particular, it does not
hold in each of the following cases:
(a) 7i(S) < GLa(q) for i € {1,...,k}. Here v;(S) = GLa(q) for ¢ € {2,3} and ~;(S) is S in
(2) of Theorem 3.22 for ¢ = 5.
(b) 7(S) < GSpy(q) fori € {k+1,...,k+1}. Here v;(S) = GLa(q) for ¢ € {2,3} and ~;(S)
is S in (2) of Theorem 3.22 for ¢ = 5.
(c) q € {2,3}, 7i(5) is the stabiliser in GSp,(q) of the decomposition V' = V; LV, with V; and
Va2 non-degenerate of dimension 2 for i € {k+1,...,k+1}. Recall that 8; = {f{, fi, ¢!, eb}
and let V. = (f%,el) for r = 1,2.

The following two lemmas are verified by computation. Let @, R and T" be v;(S) from (a),
(b) and (c) of Remark 5.4 respectively (so they depend on ¢).
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Lemma 5.5. Let g € {2,3,5}, S < Sp,,(q) is a mazimal solvable subgroup and B is a basis of V
as in Lemma 2.8, so matrices in S have shape (2.8). Specifically, let one of the following hold:
k=0,1=2,q€{2,3,5}, v(S) is R for bothi=1,2, son=4;
kE=0,1=2,q€{2,3}, %(S) is T for bothi=1,2, son—S

k=0,1=2,q¢€{2,3}, 11(5) is R, y2(S) is T, so n = 6;

k=1,1=1,q€{2,3,5}, n(S) is Q, 12(5) is R, so n = 6;

kE=1,1=1, qe{2,3}, 71(5) is Q, 72(S) is T, son=3§;

k=2,1=0,qe{2,3,5}, v(5) is Q, for bothi=1,2, son =8§;
E=1,1=0,q=>5,7(5) is Q, son =4.

Then there exist y, z € Sp,,(q) such that

SNSYNS* < Z(Sp,(q))

\_//\\_/\—/

Lemma 5.6. Let g € {2,3}, let S < Sp,(q) be a maximal solvable subgroup and let 5 be a basis
of V' as in Lemma 2.8, so matrices in S have shape (2.8).

(1) Let k=0,1=1 and let S =T. If ¢ =3, then there exist y,z € Sp,(3) such that

0100

z

SNsYnsS —<214,<0010)>.
0001

For instance,

(2) Let k=1,1=0 and 71(S) = Q = GLa(q). [
that

For instance,

SNSYNS*NS" = Z(Sp,(q))-

Theorem 5.7. Theorem C1 holds for q € {2,3,5} if S stabilises a non-zero proper subspace of
V.

Proof. Notice that I'Sp,,(¢) = GSp,,(¢). As in the case ¢ > 3, in Step 1 we obtain three
conjugates of S in S - Sp,(¢q) such that their intersection consists of diagonal matrices and
matrices which have few non-zero entries not on the diagonal. In Step 2 we find a fourth
conjugate of S such that the intersection of the four is a group of scalars.

Step 1. We commence with a technical definition.

Definition 5.8. Let 8 = {v1,...,v,} be a basis of a vector space V over a field F. Let
g € GL(V), so gg € GL,(F). We label the rows and columns of gg by corresponding basis

vectors, so the i-th row (column) is labelled by v;. If B is a subset of 3, then the restriction
gp of gg to B is the matrix in GLIB\ (F) obtained from gz by taking only the entries lying

on the intersections of rows and columns labelled by vectors in 3. If h € GL|§| (F), then the
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-~

(h, B)-replacement of gg is the matrix obtained from gg by replacing the entries lying on the
intersections of rows and columns labelled by vectors in 8 by corresponding entries of h.
For example, if n =4, 8 = {v1,v9,v3,v4}, 5 = {v2,v4},

gi11 912 913 4gi4

921 922 923 G24 and b — hi1 hi2 ’
g31 932 033 34 ha1 hoo
941 g42 G943 44

then the restriction of g to B and the (h, B)—replacement of g are

gi1 g912 913 g4
922 924 _and g21 hi1 ge3 hia
g42  ga4 g31 932 933 g34
gu1 hor  gaz  hao

respectively.

We claim that we can assume that there is at most one ¢ € {1,...,k + [} such that v;(5) is
one of the groups in Remark 5.4. Assume r < s are the only elements of {1,...,k + [} such
that 4,(S) and vs(S) are as in Remark 5.4. Recall that 8 is as in (5.10). Let 3 be 8, U S, if
r >k and B ) U Bs U Bg, if r < k. Consider g € S and notice that its restriction g to B lies

in GSPIB\(Q’ fE), where fg is the restriction of f3 to (B) with respect to the basis 3. If § is the
group consisting of restrictions to B for all g € S, then, as is easy to see, S is one of the groups

in Lemma 5.5. For example, if g is as in (2.8), r =1 and s = k + [, then g is constructed by the
dark gray blocks of the following matrix

T(Q)Vl(g)T * * * .. * * * e
0 7(9)(9)! x * * Lk
Ye+1(9) 0 *
0 ’Yk+l(g) * ..
T(g)  *
0 0 Y1(9)

-~

Let h € Sp‘g| (q,fg) and let ¢ be the (h,3)-replacement of I,,. It is routine to check that ¢ €

Sp, (g, f3) and the restriction of ¢' to B is g". Let x be the matrix (5.4). Notice that if S, 57

and T are the restrictions of S, S% and z to B respectively, then ST = 57 Therefore, by Lemma
5.5, there exist 9,2 € Splg‘(q, fg) such that

SNSVN S < Z(GSpp (a,3)).

~

For ¢ # r,s define y; and z as in (5.5). Let y and z be the (¥, 5)-replacement and (Z, B)—
replacement of matrices from (5.7) respectively. It is routine to check that y,z € Sp,(q,f3).

Observe now that S = SN .S* NS is a group of diagonal matrices.
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If there is more than one such pair (r, s), then the same corrections of y and z for each pair
can be done. Therefore, we can assume that there is at most one s € {1,...,k + [} such that
vs(S) is one of the groups in Remark 5.4. If there is no such s, then Step 2 of the proof of
Theorem 5.3 implies the theorem, so assume that such s exists. Hence, defining x to be the
matrix (5.4), y and z to be as in (5.7) where y; and z; are as in (5.5) for i # s and ys = z5 = I,
we obtain that S = SN .S* NS consists of matrices of the following shape where a; € IF; and
A € 74(S). If s > k (so we may assume s = k + 1):

diag[T(g)alh, ce ,T(g)akfnk,A, OszrQIan_Q, ce 7ak+lInk+l7akInk7 co ,alll]. (511)
If s < k:
diag[T(g)aljnu cee 7T(g)as—1jns—1 ) T(g)AT7 T(g)a8+1jns+17 s 7T(g)akjnk7
ak+1-[nk+1> ) O[k—‘rl-[nk_Hu
aplny, - asyidn Mo 1Ly, 00y (5.12)

Step 2. Let s € {1,...,k + [} be such that v5(5) is Q, R or T as defined after Remark 5.4.

Since the only diagonal matrix in Sp,,(2) is I, it is enough to obtain four conjugates of S
in Sp,,(2) such that their intersection is a group of diagonal matrices. Therefore, if v4(S) €
{GL2(2),Spy(2) ¢ Sym(2)}, then by Lemma 5.6 and Theorem 3.22 using the construction in
Step 1 we obtain y, z,v € Sp,,(q) such that

SNSYNsS*NsSY ={1}.
Hence for ¢ = 2 we only need to consider the situation v4(S) = R.

We consider three distinct cases — when ~4(S) is R, T and @ respectively.

Case 1. First assume ~,(S) is R, so s > k. Without loss of generality, we can assume
s =k+ 1. Let 8 be as in Step 2 of the proof of Theorem 5.3. Let r be such that restriction of
matrices from S to vectors { f,, e, } is v5(S). We relabel vectors in 3 as follows:

e f. and e, become f and e respectively;
e if § < r, then f; and e; remain f; and e; respectively;
e if { > r, then f; and e; become f;_1 and e;_; respectively.

Therefore, since af = a for a € F, with ¢ € {2,3,5}, a matrix g € S has shape (5.11) with

(A A
A_</\3 A4>.

We consider the following four subcases: (kK > 1,n; > 2), (k= 1,n; = 1), (k > 2,n; = 1),

(k = 0771’1 > ]-)
Let £ > 1 and n; > 2. Now W = (eq,...,ey,,) is an S-invariant subspace. Let m = n; and let
a € GL,(q) be such that
(n—2)/2
(e)a= > eite+e
1=m-+1
(fi)a = f1;
(n—2)/2

(e2)a= > eiteat+f—fi

=m-+1
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(f2)a = fa

(n—2)/2

Z e + €j; je{3,...,m} (5.13)

i=m-+1
(fi)a = fj je{3,...,m}
(ej)a = ej; je{m+1,...,(n—2)/2}
(fa=fi=Y fi je{m+1,...,(n—2)/2}

i=1

(e)a = e+ fo
(fla=f—fi.

It is routine to check that a € Sp,,(¢,f3). Consider g € SN S Since S stabilises the subspace
W, S® stabilises (W)a. As in the proof of Theorem 5.3, let §; € Fy; be such that (e;)g = J;e; for
ie€{l,...,(n—1)/2}. Therefore,

(n—2)/2 ) .
((e1)a)g = 2eimmin i+ oner F Aaf £ Aae; (5.14)
ner)a+ ...+ nmem)a
for some n1,...,nm € Fy. Observe that ((e1)a)g does not have e; for 1 < ¢ < m in the first line

of (5.14), so ((e1)a)g = m(e1)a; thus Ay = 0 and
)\4 = ] = 5m+1 =...= 5(71—2)/2'

The same argument for ((e2)a)g shows that Ao = 0 and 7(g)a; = A1 = ay. Therefore, g = a1,

so g € Z(GSp, (g, f5)).
Let k=1 and n; = 1. So (e;) is an S-invariant subspace of V. If n = 4, then Theorem C1 is

verified by computation. So we can assume that n > 4. Thus, [ > 2 and

W= (fa..., fin-2)/2:€2:- s €n_2)/2,€1)
is S-invariant. Let a € GL,(¢) be such that

(n—2)/2

Z eit+erte (fi)a= fi;
(62)G—€2+f—f1, (fe)a = fa — f1; (5.15)
(ej)a = ej; (fi)a=fj—fi; j€{2,...,(n—2)/2}
(e)a = e+ fo (fla=f— fi.

It is routine to check that a € Sp,,(q,fg). Consider g € SN S%. Since S stabilises the subspaces
(e1) and W, S® stabilises ((e1)a) and (W)a. Therefore,

(n—2)/2
((e1)a)g = Z 0ie; + arer + A3 f + e =n(er)a (5.16)
i=2
for some 7 € Fy. Hence 62 = ... = §(,,_2)/2 = As = a1 and A3 = 0. In the same way

(e2)a)g = {5262+>\1f+>\2€—7'( g)o fi; (5.17)

men)a+ 05 niea+ 057 G fi)a
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for some 7;,& € Fy. Since ((e2)a)g does not have e; for ¢ > 2 and f; for j > 1 in the first
line of (5.17), ((e2)a)g = n2(e2)a. Therefore, 7(g)avy = A1 = a1 and A = 0,80 g = aqI, €
Z(Spy(q,1s))-

Let k > 2 and ny = 1. So (e1) and W = (e1,e2,...,€(n,/2+1)) are S-invariant subspaces of
V. Let a be as in (5.15). Consider g € S NS Since S stabilises the subspaces (e;) and W,
S¢ stabilises ((e1)a) and (W)a. Therefore, (5.16) holds, so d2 = ... = d(p—2)/2 = A4 = a1 and
A3 = 0. In the same way

daea + A1 f + doe — o fi;
m(ena+ S0 niena

for some n; € Fy,. Since ((e2)a)g does not have e; for i > 2 in the first line of (5.18), ((e2)a)g =
n2(e2)a. Therefore, Ay = oy and A2 =0, so g = a1, € Z(GSp,,(¢,f3)).

Let k = 0, so g € S is a block-diagonal matrix with blocks in 7;(S) < GSp,,.(q). Let W =
(fis o5 fnay2:€15 -+ -5 €nyy2). If m = 4, then Theorem C1 follows by Lemma 5.5, so let n >
6. We can assume that ny > 4. Indeed, if n, = 2 for ¢ € {1,...,l}, then we can consider
S1 = diag[y2(95),73(S)] < diag|GSpy(q), GSpy(q)] as a subgroup in Sp,(¢). By Lemma 5.5,
bs, (Spy(q)) < 3. We redefine y2(g) to be diag[GSps(q), GSpy(q)], so now ny = 4. Let m = na/2
and let a € Sp,,(q, fg) be defined by (5.13). Arguments similar to the case (k > 1,n; > 2) imply
9 € Z(GSp, (g, f3))-

Case 2. Let ¢ = 3 and ~5(5) is T as defined after Remark 5.4. Without loss of generality,
we can assume s = k+ 1. Let 3 be as in Step 2 of the proof of Theorem 5.3. Let r be such that
the restriction of matrices from S to vectors {f,, fr+1,€r,ers1} is 75(S). We relabel vectors in
5 as follows:

((e2)a)g = { (5.18)

e f.. fr+1, er and e,41 become f, fo, e and eg respectively;
e if § < r, then f; and e; remain f; and e; respectively;
e if 4 > r then f; and e; become f;_o and e;_o respectively.
Let ys, zs € Spy(q) be such that v5(S) N vs(S)¥s N~s(S)* is as in (1) of Lemma 5.6. For i # s
define y; and z; as in (5.5). Define y and x as in (5.7) and S as in Step 1 of the proof of
Theorem 5.3.
Therefore, g € S has shape (5.11) with

/\1A0/\20 1010

_[ox0 o0 0100

A=1060xn0 E<2I4,<0010>>
0 0 0 N\ 0001

and \; € F3 for i € {1,2}. Let W = (ey1,...,ep,) if £ > 0 and

W = <f17-"7fn1/27€17"'7€n1/2>

if £ = 0. Let m = n; for W totally singular and m = n;/2 for W non-degenerate. Let a € GL,,(q)
be such that

(n—4)/2
(e1)a = Z ei+ei+ f+ fi;
i=m+1
(f1)a = fu;
(n—4)/2
(ej)a = Z ei + ej; jed2,...,m}

i=m-+1
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(fj)a:fj; jE{Q,...,m}
(ej)a = ej; je{m+1,...,(n—4)/2} (5.19)
(fla=fi=Y_fi je{m+1,....(n—4)/2}

i=1

(€)a=e+ fi;
(fla=f
(eg)a = ep;
(fo)a = fo.

Here the underlined part is present only if W is totally isotropic. It is routine to check that
a € Sp,(q,f3). Since S stabilises the subspace W, S* stabilises (W)a. Therefore,

(n—4)/2 ) .
((61)&)92 {Zz m-1 5614-0[161+>\1f+>\26+T(g)a1f1, (5.20)

Yoy mile)a+ 370 G fi)a

for some n;,& € Fy. Here all § = 0 if W is totally isotropic. Since ((e1)a)g does not have
ei for 1 < i < m and f; for 1 < i < m (for W non-degenerate) in the first line of (5.20),
((e1)a)g = mi(e1)a, so Ay = 0 and

Therefore, g = a11, and g € Z(GSp,(q, fs)).

Case 3. Let ¢ € {3,5} and v5(S) = @, so s < k. If K+ = 1, then Theorem C1 follows by
(3) of Lemma 5.6. Let 8 be as in Step 2 of the proof of Theorem 5.3. Let r be such that the
restriction of matrices of S to vectors {e,, e,+1} is 75(5). We relabel vectors in 3 as follows:

e fr, fri1, & and e, become f, fo, e and ey respectively;
e if { < r, then f; and e; remain f; and e; respectively;
e if { > r, then f; and e; become f;_5 and e;_o respectively.

Let 5 {f, fo,e, eo} and let S be the group consisting of restrictions to B of all g€ S.Let 5,z €
Sp.(q) be such that SN SYNS? is as in (2) of Lemma 5.6 if ¢ =3 and SNSTNS% < Z(GSp,(5))
if ¢ = 5. Let y and z be the (7, ﬂ)—replacement and (Z, [3) replacement of matrices from (5.7)
respectively. Recall that S = S N S* N S? where x is the matrix (5.4). If ¢ = 5, then S is a
group of diagonal matrices and Step 2 of the proof of Theorem 5.3 implies the theorem.

If ¢ = 3, then g € S has shape (5.12) with
00> < 0)>
00 0
11 ) 2
02 1

A A2 0 0
diag[r(g)AT,A] = <A03 B ;]6) € <<
and \; € F3 for i € {1,...,8}. Notice that if Ay = A\¢ = 0, then diag[r(g)AT, A] is the scalar

0
0
2
0 0 A7 Ag 2
matrix al, with a € F}, so 7(g9) = a? = 1.

2
1
0
0

OOoMNN

0
2
0
0

OO
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Assume s > 1 and let W = (eq, ..., e,,), where m = ny. Let a € GL,,(¢) be such that

(n—1)/2
(e1)a = Z eiter+e+f; (fi)a= fi;
i=m+1
(ej)a = ej; (fj)a = fj: je{2,...,m}
(ej)a = ej; (fa=fi—fi; je{m+1,... (n—4)/2}
(e)a=e+ fi; (fla=f-fu
(eo)a = eo; (fo)a = fo

It is routine to check that a € Sp,, (¢, fg). Since S stabilises W, S* stabilises (W)a. Therefore,

(n=4)/2 ¢ .
((e1)a)g = {Zim—l—l d;e; + arer + Ase + dgeg + A1 f + Ao fo; (5.21)

>izimiei)a
for some n; € Fy. Since ((e1)a)g does not have e; for 1 < i < m in the first line of (5.21),
((e1)a)g = mi(e1)a, so Ay = A\g = 0 and

a1 = )\1 = )\5 =Om+1 = ... = 5(n74)/2-

Therefore, g = a11, and g € Z(GSp,(q, fs)).
Assume s = 1 and let W = (e, eg). Let a € GL,(q) be such that

(e)Ja=e+ f; (fla=f;
(n—4)/2
(e)a= > ei+eo; (fo)a= fo;
=1
(ej)a = ej; (fj)a=fi—fo; j€{l,....,(n—4)/2}.

It is routine to check that a € Sp, (¢, fs). Since S stabilises W, S* stabilises (¥ )a. Therefore,

(( )a) _ {)\56 + Xgeo + A1 f + Ao fo; (5'22)

m(e)a+mn2(eo)a

for some 1,72 € F,. Since ((e)a)g does not have e; for 1 < ¢ < (n —4)/2 in the first line of

(5.22), ((e)a)g = ni(e)a, so Ay = A\g = 0 and diag[r(g)AT, A] is the scalar matrix A\;I. In the
same way

(n=4)/2 5 .

(eoja)g = § 2=t Oici+ e

m(e)a+ma(eo)a
for some n1,m2 € Fy. Since ((ep)a)g does not have e or f in the first line of (5.23), ((e)a)g =
ni(e)a, so Ay =90; forie1,...,(n—4)/2 and g = M\ I, € Z(GSp,,(q, fs)) since 7(g) = 1. O

Theorem C1 now follows by Theorems 5.2, 5.3 and 5.7.

(5.23)

5.2. Solvable subgroups not contained in I'Sp, (¢). If ¢ = 2/, then Sp,(¢) has a graph-field
automorphism 1) of order 2f; see [19, §12.3] for details. If 8 is a basis of V' as in Lemma 2.8,
then we can assume that 1?2 is ¢ by [19, Proposition 12.3.3].

Theorem C2. Let q be even and let A = Aut(PSpy(q)"). If S is a mazimal solvable subgroup
of A, then bg(S - Spy(q)’) < 4, so Regg(S - Sp,(¢q)',5) > 5.
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Proof. For ¢ = 2 the statement is verified by computation.
Assume ¢ = 2/ with f > 1. Let 6 be a generator of F;. By [30, Proposition 2.4.3], A =
Spa(q) x (014) where A is as defined before Lemma 2.1. Therefore,

Aut(Sp4(q)) = Spa(q) x (),

and we identify these two groups. Denote I' := Sp,(q) x (¥?), so I = Sp,(q) x ().

If S lies in I', then the statement follows by Theorem C1.

Assume that S does not lie in I', so S is in a maximal subgroup H of A not contained in I'. For
a description of such maximal subgroups see [1, §14] and [7, Table 8.14]. If H is a non-subspace
subgroup, then the statement follows by [12, Theorem 1.1]. If H is a subspace subgroup, then
H is solvable by [7, Table 8.14], so S = H and bs(S - Sps(q)) < 3 by [14, Lemma 5.8]. O
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