On algebraic normalizers of maximal tori in simple groups of Lie type

Anton Baykalov

The University of Auckland

16.01.2019

Anton Baykalov (UoA)

Э

イロト イロト イヨト イヨト

A set \overline{G} is an (affine) algebraic group over algebraicly closed field k if:

3

A set $\overline{\mathbf{G}}$ is an (affine) algebraic group over algebraicly closed field k if:

• \overline{G} is a group;

A set \overline{G} is an (affine) algebraic group over algebraicly closed field k if:

- \overline{G} is a group;
- \overline{G} is an (affine) algebraic variety;

A set \overline{G} is an (affine) algebraic group over algebraicly closed field k if:

- \overline{G} is a group;
- \overline{G} is an (affine) algebraic variety;
- $(x, y) \mapsto xy \ (\overline{\mathbf{G}} \times \overline{\mathbf{G}} \to \overline{\mathbf{G}}) \text{ and } x \mapsto x^{-1} \ (\overline{\mathbf{G}} \to \overline{\mathbf{G}}) \text{morphisms of varieties.}$

A set \overline{G} is an (affine) algebraic group over algebraicly closed field k if:

- \overline{G} is a group;
- \overline{G} is an (affine) algebraic variety;
- $(x, y) \mapsto xy \ (\overline{G} \times \overline{G} \to \overline{G}) \text{ and } x \mapsto x^{-1} \ (\overline{G} \to \overline{G}) \text{morphisms of varieties.}$

Example

$$GL_n(k) = \{(a_{ij}) \in k^{(n^2)}; det(a_{ij}) \neq 0\} \subseteq k^{(n^2)}$$

A set \overline{G} is an (affine) algebraic group over algebraicly closed field k if:

- \overline{G} is a group;
- \overline{G} is an (affine) algebraic variety;
- $(x, y) \mapsto xy \ (\overline{G} \times \overline{G} \to \overline{G}) \text{ and } x \mapsto x^{-1} \ (\overline{G} \to \overline{G}) \text{morphisms of varieties.}$

Example

$$GL_n(k) = \{(a_{ij}) \in k^{(n^2)}; det(a_{ij}) \neq 0\} \subseteq k^{(n^2)}$$

$${\it GL}_n(k) = \{(a_{11},\ldots,a_{nn},b) \in k^{(n^2+1)}; b \cdot det(a_{ij}) = 1\} \subseteq k^{(n^2+1)}$$

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

A set \overline{G} is an (affine) algebraic group over algebraicly closed field k if:

- \overline{G} is a group;
- \overline{G} is an (affine) algebraic variety;
- $(x, y) \mapsto xy \ (\overline{G} \times \overline{G} \to \overline{G}) \text{ and } x \mapsto x^{-1} \ (\overline{G} \to \overline{G}) \text{morphisms of varieties.}$

Example

$$GL_n(k) = \{(a_{ij}) \in k^{(n^2)}; det(a_{ij}) \neq 0\} \subseteq k^{(n^2)}$$

$$GL_n(k) = \{(a_{11}, \dots, a_{nn}, b) \in k^{(n^2+1)}; b \cdot det(a_{ij}) = 1\} \subseteq k^{(n^2+1)}$$

Every linear algebraic group (closed subgroup of $GL_n(k)$) is affine. Every affine algebraic group is linear (isomorphic to a closed subgroup of $GL_n(k)$).

3

イロト イボト イヨト イヨト

Let $D_n(k)$ be the subgroup of all diagonal matrices of $GL_n(k)$. An algebraic group isomorphic to $D_n(k) (\cong k^* \times \ldots \times k^*)$ is a **torus**.

3

イロト イボト イヨト イヨト

Let $D_n(k)$ be the subgroup of all diagonal matrices of $GL_n(k)$. An algebraic group isomorphic to $D_n(k) (\cong k^* \times \ldots \times k^*)$ is a **torus**.

All maximal tori of \overline{G} are conjugate in \overline{G} .

<ロト < 回ト < 回ト < 回ト < 回ト -

Let $D_n(k)$ be the subgroup of all diagonal matrices of $GL_n(k)$. An algebraic group isomorphic to $D_n(k) (\cong k^* \times \ldots \times k^*)$ is a **torus**.

All maximal tori of \overline{G} are conjugate in \overline{G} .

 \overline{G} is reductive if its unipotent radical $R_u(\overline{G})$ is trivial.

イロト イボト イヨト イヨト

Let $D_n(k)$ be the subgroup of all diagonal matrices of $GL_n(k)$. An algebraic group isomorphic to $D_n(k) (\cong k^* \times \ldots \times k^*)$ is a **torus**.

All maximal tori of \overline{G} are conjugate in \overline{G} .

 \overline{G} is reductive if its unipotent radical $R_u(\overline{G})$ is trivial.

 \overline{G} is simple if \overline{G} has no proper closed connected normal subgroups (any normal subgroup must be finite and must lie in the centre)

Let $D_n(k)$ be the subgroup of all diagonal matrices of $GL_n(k)$. An algebraic group isomorphic to $D_n(k) (\cong k^* \times \ldots \times k^*)$ is a **torus**.

All maximal tori of \overline{G} are conjugate in \overline{G} .

 \overline{G} is reductive if its unipotent radical $R_u(\overline{G})$ is trivial.

 \overline{G} is simple if \overline{G} has no proper closed connected normal subgroups (any normal subgroup must be finite and must lie in the centre)

Let \overline{T} be a max. torus. Let \overline{B} be a Borel subgroup of \overline{G} . If G is reductive connected, then there is the unique Borel subgroup \overline{B}^- such that $\overline{B} \cap \overline{B}^- = \overline{T}$.

Let $D_n(k)$ be the subgroup of all diagonal matrices of $GL_n(k)$. An algebraic group isomorphic to $D_n(k) (\cong k^* \times \ldots \times k^*)$ is a **torus**.

All maximal tori of \overline{G} are conjugate in \overline{G} .

 \overline{G} is reductive if its unipotent radical $R_u(\overline{G})$ is trivial.

 \overline{G} is simple if \overline{G} has no proper closed connected normal subgroups (any normal subgroup must be finite and must lie in the centre)

Let \overline{T} be a max. torus. Let \overline{B} be a Borel subgroup of \overline{G} . If G is reductive connected, then there is the unique Borel subgroup \overline{B}^- such that $\overline{B} \cap \overline{B}^- = \overline{T}$.

Example

 $\overline{G} = SL_n(k)$ is simple, $\overline{T} = D_n(k) \cap \overline{G}$ is max. torus, \overline{B} is the subgroup of upper triangular matrices, \overline{B}^- – lower triangular matrices.

Let C be minimal proper subgroup of $R_u(\overline{B})$ or $R_u(\overline{B}^-)$, normalized by \overline{T} .

Let *C* be minimal proper subgroup of $R_u(\overline{B})$ or $R_u(\overline{B}^-)$, normalized by \overline{T} . *C* is isomorphic to k^+ .

Э

< ロ > < 同 > < 三 > < 三 > < 三 > <

Let *C* be minimal proper subgroup of $R_u(\overline{B})$ or $R_u(\overline{B}^-)$, normalized by \overline{T} . *C* is isomorphic to k^+ .

There is a homomorphism $\overline{T} \to \operatorname{Aut}(k^+) \cong k^*$.

- Let *C* be minimal proper subgroup of $R_u(\overline{B})$ or $R_u(\overline{B}^-)$, normalized by \overline{T} . *C* is isomorphic to k^+ .
- There is a homomorphism $\overline{T} \to \operatorname{Aut}(k^+) \cong k^*$.

Hence C determines an element of $\operatorname{Hom}(\overline{T}, k^*) = X$.

- Let *C* be minimal proper subgroup of $R_u(\overline{B})$ or $R_u(\overline{B}^-)$, normalized by \overline{T} . *C* is isomorphic to k^+ .
- There is a homomorphism $\overline{T} \to \operatorname{Aut}(k^+) \cong k^*$.

Hence *C* determines an element of $\operatorname{Hom}(\overline{T}, k^*) = X$. Such elements of *X* are \overline{T} -roots of \overline{G} .

Roots form a finite subset Φ of X (independent of the choice of \overline{B} containing \overline{T} .)

The subgroup giving rise to $\alpha \in X$ is a root subgroup X_{α} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Let *C* be minimal proper subgroup of $R_u(\overline{B})$ or $R_u(\overline{B}^-)$, normalized by \overline{T} . *C* is isomorphic to k^+ .
- There is a homomorphism $\overline{T} \to \operatorname{Aut}(k^+) \cong k^*$.

Hence *C* determines an element of $Hom(\overline{T}, k^*) = X$. Such elements of *X* are \overline{T} -roots of \overline{G} .

Roots form a finite subset Φ of X (independent of the choice of \overline{B} containing \overline{T} .)

The subgroup giving rise to $\alpha \in X$ is a root subgroup X_{α} .

Example

$$\overline{\mathbf{G}} = SL_{l+1}(k), \ \overline{\mathbf{T}} = D_{l+1}(k) \cap \overline{\mathbf{G}}; \Phi = A_l = \{ \pm (a_i - a_j) | 1 \leq i < j \leq l+1 \}; \ X_{a_i - a_j} = \{ E + te_{ij}; t \in k \}$$

< ロト < 同ト < 三ト < 三ト

Let char(k) = p > 0 and $q = p^e$.

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

Anton Baykalov (UoA)

Let
$$char(k) = p > 0$$
 and $q = p^{e}$.
Let $\phi_q : (a_{ij}) \mapsto (a_{ij}^{q})$.

Let char(k) = p > 0 and $q = p^{e}$. Let $\phi_q : (a_{ij}) \mapsto (a_{ii}^{q})$.

Homomorphism $\sigma : \overline{G} \to \overline{G}$ is a standard Frobenius map if there exists injective hom. $i : \overline{G} \to GL_n(k)$ for some n s.t.

 $i(\sigma(g)) = \phi_q(i(g))$ for all $g \in \overline{G}$.

Let char(k) = p > 0 and $q = p^e$. Let $\phi_q : (a_{ij}) \mapsto (a_{ij}^q)$.

Homomorphism $\sigma : \overline{G} \to \overline{G}$ is a standard Frobenius map if there exists injective hom. $i : \overline{G} \to GL_n(k)$ for some *n* s.t.

$$i(\sigma(g)) = \phi_q(i(g))$$
 for all $g \in \overline{G}$.

A hom. σ is a **Frobenius map** if some power of σ is a standard Frobenius map.

Let char(k) = p > 0 and $q = p^e$. Let $\phi_q : (a_{ij}) \mapsto (a_{ij}^q)$.

Homomorphism $\sigma : \overline{G} \to \overline{G}$ is a standard Frobenius map if there exists injective hom. $i : \overline{G} \to GL_n(k)$ for some *n* s.t.

$$i(\sigma(g)) = \phi_q(i(g))$$
 for all $g \in \overline{G}$.

A hom. σ is a **Frobenius map** if some power of σ is a standard Frobenius map.

If σ is a Frobenius map then $\overline{G}_{\sigma} := \{g \in \overline{G} : \sigma(g) = g\}$ is a finite group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Let char(k) = p > 0 and $q = p^e$. Let $\phi_q : (a_{ij}) \mapsto (a_{ij}^q)$.

Homomorphism $\sigma : \overline{G} \to \overline{G}$ is a standard Frobenius map if there exists injective hom. $i : \overline{G} \to GL_n(k)$ for some *n* s.t.

$$i(\sigma(g)) = \phi_q(i(g))$$
 for all $g \in \overline{G}$.

A hom. σ is a **Frobenius map** if some power of σ is a standard Frobenius map.

If σ is a Frobenius map then $\overline{G}_{\sigma} := \{g \in \overline{G} : \sigma(g) = g\}$ is a finite group.

Example

$$\overline{\mathbf{G}} = \mathbf{GL}_n(k), \, \sigma = \phi_q, \, \overline{\mathbf{G}}_{\sigma} = \mathbf{GL}_n(q).$$

Anton Baykalov (UoA)

Э

イロト イロト イヨト

3

A group $O^{p'}(\overline{G}_{\sigma})' \leq G \leq \overline{G}_{\sigma}$ is a finite group of Lie type.

A group $O^{p'}(\overline{G}_{\sigma})' \leq G \leq \overline{G}_{\sigma}$ is a finite group of Lie type.

There are finitely many simple algebraic groups for given k and Φ .

イロト イロト イモト イモト 二日

A group $O^{p'}(\overline{G}_{\sigma})' \leq G \leq \overline{G}_{\sigma}$ is a finite group of Lie type.

There are finitely many simple algebraic groups for given k and Φ .

For fixed k and Φ there is unique simple alg. group \overline{G}_u (universal or simply-connected) such that every simple \overline{G} is quotient of \overline{G}_u by $K \leq Z(\overline{G}_u)$.

A group $O^{p'}(\overline{G}_{\sigma})' \leq G \leq \overline{G}_{\sigma}$ is a finite group of Lie type.

There are finitely many simple algebraic groups for given k and Φ .

For fixed k and Φ there is unique simple alg. group \overline{G}_u (universal or simply-connected) such that every simple \overline{G} is quotient of \overline{G}_u by $K \leq Z(\overline{G}_u)$.

Simple alg. group \overline{G}_a with trivial center is adjoint.

A group $O^{p'}(\overline{G}_{\sigma})' \leq G \leq \overline{G}_{\sigma}$ is a finite group of Lie type.

There are finitely many simple algebraic groups for given k and Φ .

For fixed k and Φ there is unique simple alg. group \overline{G}_u (universal or simply-connected) such that every simple \overline{G} is quotient of \overline{G}_u by $K \leq Z(\overline{G}_u)$.

Simple alg. group \overline{G}_a with trivial center is adjoint.

If \overline{G} is adjoint, then $O^{p'}(\overline{G}_{\sigma})$ is a finite simple group (with few exceptions).

A group $O^{p'}(\overline{G}_{\sigma})' \leq G \leq \overline{G}_{\sigma}$ is a finite group of Lie type.

There are finitely many simple algebraic groups for given k and Φ .

For fixed k and Φ there is unique simple alg. group \overline{G}_u (universal or simply-connected) such that every simple \overline{G} is quotient of \overline{G}_u by $K \leq Z(\overline{G}_u)$.

Simple alg. group \overline{G}_a with trivial center is adjoint.

If \overline{G} is adjoint, then $O^{p'}(\overline{G}_{\sigma})$ is a finite simple group (with few exceptions).

If \overline{G} is universal, then $\overline{G}_{\sigma} = O^{p'}(\overline{G}_{\sigma})$

A group $O^{p'}(\overline{G}_{\sigma})' \leq G \leq \overline{G}_{\sigma}$ is a finite group of Lie type.

There are finitely many simple algebraic groups for given k and Φ .

For fixed k and Φ there is unique simple alg. group \overline{G}_u (universal or simply-connected) such that every simple \overline{G} is quotient of \overline{G}_u by $K \leq Z(\overline{G}_u)$.

Simple alg. group \overline{G}_a with trivial center is adjoint.

If \overline{G} is adjoint, then $O^{p'}(\overline{G}_{\sigma})$ is a finite simple group (with few exceptions). If \overline{G} is universal, then $\overline{G}_{\sigma} = O^{p'}(\overline{G}_{\sigma})$

Example

$$\Phi = A_{l}, \ \overline{\mathbf{G}}_{u} \cong SL_{l+1}(k), \ \overline{\mathbf{G}}_{a} \cong PSL_{l+1}(k) = PGL_{l+1}(k).$$

A group $O^{p'}(\overline{G}_{\sigma})' \leq G \leq \overline{G}_{\sigma}$ is a finite group of Lie type.

There are finitely many simple algebraic groups for given k and Φ .

For fixed k and Φ there is unique simple alg. group \overline{G}_u (universal or simply-connected) such that every simple \overline{G} is quotient of \overline{G}_u by $K \leq Z(\overline{G}_u)$.

Simple alg. group \overline{G}_a with trivial center is adjoint.

If \overline{G} is adjoint, then $O^{p'}(\overline{G}_{\sigma})$ is a finite simple group (with few exceptions). If \overline{G} is universal, then $\overline{G}_{\sigma} = O^{p'}(\overline{G}_{\sigma})$

Example

$$\Phi = A_{l}, \ \overline{\mathbf{G}}_{u} \cong SL_{l+1}(k), \ \overline{\mathbf{G}}_{a} \cong PSL_{l+1}(k) = PGL_{l+1}(k).$$

$$\sigma = \phi_q, \ (\overline{\mathbf{G}}_u)_{\sigma} = O^{p'}((\overline{\mathbf{G}}_u)_{\sigma}) \cong SL_{l+1}(q), \ (\overline{\mathbf{G}}_a)_{\sigma} \cong PGL_{l+1}(q), O^{p'}((\overline{\mathbf{G}}_a)_{\sigma}) \cong PSL_{l+1}(q)$$

Let \overline{T} be a maximal σ -invariant torus of \overline{G} and $\overline{N} := N_{\overline{G}}(\overline{T})$, then $T := \overline{T} \cap G$ is a maximal torus of G and $N(G, T) := \overline{N} \cap G$ is the algebraic normalizer of T in G.

Let \overline{T} be a maximal σ -invariant torus of \overline{G} and $\overline{N} := N_{\overline{G}}(\overline{T})$, then $T := \overline{T} \cap G$ is a maximal torus of G and $N(G, T) := \overline{N} \cap G$ is the **algebraic normalizer** of T in G. Obviously, $N(G, T) \leq N_G(T)$.

3

< ロ > < 同 > < 三 > < 三 > < 三 > <

Let \overline{T} be a maximal σ -invariant torus of \overline{G} and $\overline{N} := N_{\overline{G}}(\overline{T})$, then $T := \overline{T} \cap G$ is a maximal torus of G and $N(G, T) := \overline{N} \cap G$ is the **algebraic normalizer** of T in G. Obviously, $N(G, T) \leq N_G(T)$.

Problem

In "Seminar on Algebraic Groups..." Springer and Steinberg consider reductive alg. groups and prove sufficient condition for $N(G, T) = N_G(T)$. They asked what are the exceptions. Our goal is to find all the exceptions when G is simple.

Let \overline{T} be a maximal σ -invariant torus of \overline{G} and $\overline{N} := N_{\overline{G}}(\overline{T})$, then $T := \overline{T} \cap G$ is a maximal torus of G and $N(G, T) := \overline{N} \cap G$ is the **algebraic normalizer** of T in G. Obviously, $N(G, T) \leq N_G(T)$.

Problem

In "Seminar on Algebraic Groups..." Springer and Steinberg consider reductive alg. groups and prove sufficient condition for $N(G, T) = N_G(T)$. They asked what are the exceptions. Our goal is to find all the exceptions when G is simple.

Example

char(k) = 2, $\overline{G} = SL_n(k), \sigma = \phi_2, \overline{T} = D_n(k) \cap \overline{G};$ $\overline{G} = SL_n(2),$ \overline{N} is the set of monomial matrices, so $N(G, T) \cong \text{Sym}(n);$ $T = \{I_{n \times n}\}, \text{ so } N_G(T) = G.$

<ロト < 回ト < 回ト < 回ト < 回ト < □ト < □ > ...

Э

Springer and Steinberg

Let \overline{T} be σ -stable max. torus of connected reductive \overline{G} . If T is nondegenerate, then $N(G, T) = N_G(T)$.

프 + 프 +

Springer and Steinberg

Let \overline{T} be σ -stable max. torus of connected reductive \overline{G} . If T is nondegenerate, then $N(G, T) = N_G(T)$.

Lemma

Let $\overline{G}_a = \xi(\overline{G}_u)$. Let $\overline{S} \leq \overline{G}_u$ and $\overline{T} = \xi(\overline{S}) \leq \overline{G}_a$ be maximal σ -stable tori. Torus $T := \overline{T}_{\sigma} \cap O^{p'}((\overline{G}_a)_{\sigma})$ is nondegenerate in \overline{G}_a if and only if torus \overline{S}_{σ} is nondegenerate in \overline{G}_u .

イロト イボト イヨト イヨト

Springer and Steinberg

Let \overline{T} be σ -stable max. torus of connected reductive \overline{G} . If T is nondegenerate, then $N(G, T) = N_G(T)$.

Lemma

Let $\overline{G}_a = \xi(\overline{G}_u)$. Let $\overline{S} \leq \overline{G}_u$ and $\overline{T} = \xi(\overline{S}) \leq \overline{G}_a$ be maximal σ -stable tori. Torus $T := \overline{T}_{\sigma} \cap O^{p'}((\overline{G}_a)_{\sigma})$ is nondegenerate in \overline{G}_a if and only if torus \overline{S}_{σ} is nondegenerate in \overline{G}_u .

Carter

If \overline{G} is connected reductive then all maximal tori of \overline{G}_{σ} are nondegenerate provided q is sufficiently large.

 $W = \overline{N}/\overline{T}$ does not depend on choice of \overline{T} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $W = \overline{N}/\overline{T}$ does not depend on choice of \overline{T} .

Fix a maximal σ -stable torus \overline{T} of \overline{G} . Let π – natural hom. $\pi : \overline{N} \to W$.

Э

< ロ > < 同 > < 三 > < 三 > < 三 > <

 $W = \overline{N}/\overline{T}$ does not depend on choice of \overline{T} . Fix a maximal σ -stable torus \overline{T} of \overline{G} . Let π – natural hom. $\pi : \overline{N} \to W$. σ acts on W by $w^{\sigma} = \pi(n^{\sigma})$; $w = n\overline{T}$, $n \in \overline{N}$.

 $W = \overline{N}/\overline{T}$ does not depend on choice of \overline{T} . Fix a maximal σ -stable torus \overline{T} of \overline{G} . Let π – natural hom. $\pi : \overline{N} \to W$. σ acts on W by $w^{\sigma} = \pi(n^{\sigma})$; $w = n\overline{T}$, $n \in \overline{N}$. w_1 and $w_2 \in W$ are σ -conjugate if $w_1 = (w^{-1})^{\sigma} w_2 w$ for some $w \in W$.

 $W = \overline{N}/\overline{T}$ does not depend on choice of \overline{T} . Fix a maximal σ -stable torus \overline{T} of \overline{G} . Let π – natural hom. $\pi : \overline{N} \to W$. σ acts on W by $w^{\sigma} = \pi(n^{\sigma})$; $w = n\overline{T}$, $n \in \overline{N}$. w_1 and $w_2 \in W$ are σ -conjugate if $w_1 = (w^{-1})^{\sigma} w_2 w$ for some $w \in W$.

Carter

Let $g \in \overline{G}$. A torus \overline{T}^g is σ -invariant if and only if $g^{\sigma}g^{-1} \in \overline{N}$. The map $\overline{T}^g \mapsto \pi(g^{\sigma}g^{-1})$ is a bijection between \overline{G}_{σ} -conjugacy classes of maximal σ -invariant tori of \overline{G} and classes of σ -conjugate elements of W.

 $W = \overline{N}/\overline{T}$ does not depend on choice of \overline{T} . Fix a maximal σ -stable torus \overline{T} of \overline{G} . Let π – natural hom. $\pi : \overline{N} \to W$. σ acts on W by $w^{\sigma} = \pi(n^{\sigma})$; $w = n\overline{T}$, $n \in \overline{N}$. w_1 and $w_2 \in W$ are σ -conjugate if $w_1 = (w^{-1})^{\sigma} w_2 w$ for some $w \in W$.

Carter

Let $g \in \overline{G}$. A torus \overline{T}^g is σ -invariant if and only if $g^{\sigma}g^{-1} \in \overline{N}$. The map $\overline{T}^g \mapsto \pi(g^{\sigma}g^{-1})$ is a bijection between \overline{G}_{σ} -conjugacy classes of maximal σ -invariant tori of \overline{G} and classes of σ -conjugate elements of W.

Let
$$g^{\sigma}g^{-1} \in \overline{N}$$
 and $\pi(g^{\sigma}g^{-1}) = w$. Then $(\overline{T}^{g})_{\sigma} = (\overline{T}_{\sigma w})^{g}$.

CLASSICAL GROUPS

<ロト < 回ト < 回ト < 回ト < 回ト -

CLASSICAL GROUPS

On the example of PSL_n^{ε}

1

<ロト < 回ト < 回ト < 回ト < 回ト -

Let τ be the inverse-transpose map on $GL_n(k)$.

Algebraic normalizers

Anton Baykalov (UoA)

Let τ be the inverse-transpose map on $GL_n(k)$. Let $\overline{G} = SL_n(k)$ and $\overline{T} = D_n(k) \cap \overline{G}$, then $W \cong Sym(n)$ and $\sigma \in \{\phi_q, \phi_q \tau\}$ acts trivial on W. Let τ be the inverse-transpose map on $GL_n(k)$. Let $\overline{G} = SL_n(k)$ and $\overline{T} = D_n(k) \cap \overline{G}$, then $W \cong Sym(n)$ and $\sigma \in \{\phi_q, \phi_q \tau\}$ acts trivial on W. \overline{G}_{σ} -classes of maximal tori \leftrightarrows conjugacy classes of elements of Sym(n). The standard representative of a class is

$$(1, ..., n_1)(n_1 + 1, ..., n_1 + n_2) ... (n - n_m + 1, ..., n)$$

 $n_1 \le n_2 \le ... \le n_m; \sum_{i=1}^m n_i = n$

イロト イボト イヨト イヨト

Let τ be the inverse-transpose map on $GL_n(k)$. Let $\overline{G} = SL_n(k)$ and $\overline{T} = D_n(k) \cap \overline{G}$, then $W \cong Sym(n)$ and $\sigma \in \{\phi_q, \phi_q \tau\}$ acts trivial on W. \overline{G}_{σ} -classes of maximal tori \leftrightarrows conjugacy classes of elements of Sym(n). The standard representative of a class is

$$(1,\ldots,n_1)(n_1+1,\ldots,n_1+n_2)\ldots(n-n_m+1,\ldots,n)$$

$$n_1 \leqslant n_2 \leqslant \ldots \leqslant n_m; \sum_{i=1}^m n_i = n$$

Buturlakin and Grechkoseeva

Let w be the standard representative of type $(n_1)(n_2)...(n_m)$, U be the subgroup of $GL_n(k)$ of all block-diagonal matrices $bd(D_1,...,D_m)$ such that $D_i = \text{diag}(\lambda_i, \lambda_i^{\varepsilon q}, ..., \lambda_i^{(\varepsilon q)^{n_i-1}})$, $\lambda_i^{(\varepsilon q)^{n_i-1}} = 1$, for all $i \in \{1, 2, ..., m\}$. Then $\overline{T}_{\sigma w} = U \cap \overline{G}$.

< ロ > < 同 > < 三 > < 三 > < 三 > <

(B.) Theorem 1

Let \overline{G} be $SL_n(k)$ and $\sigma \in \{\phi_q, \phi_q \tau\}$, so $\overline{G}_{\sigma} = SL_n^{\epsilon}(q)$. Let \overline{T} be the subgroup of all diagonal matrices in \overline{G} . If \overline{T}^g is a maximal σ -stable torus, then $S := (\overline{T}^g)_{\sigma}$ is nondegenerate always, except the case $\overline{G}_{\sigma} = SL_n(2)$ and $w := \pi(g^{\sigma}g^{-1})$ is of type $(n_1)(n_2) \dots (n_m)$, where $n_1 = n_2 = 1$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

(B.) Theorem 1

Let \overline{G} be $SL_n(k)$ and $\sigma \in \{\phi_q, \phi_q\tau\}$, so $\overline{G}_{\sigma} = SL_n^{\epsilon}(q)$. Let \overline{T} be the subgroup of all diagonal matrices in \overline{G} . If \overline{T}^g is a maximal σ -stable torus, then $S := (\overline{T}^g)_{\sigma}$ is nondegenerate always, except the case $\overline{G}_{\sigma} = SL_n(2)$ and $w := \pi(g^{\sigma}g^{-1})$ is of type $(n_1)(n_2) \dots (n_m)$, where $n_1 = n_2 = 1$.

(B.) Theorem 2

Let \overline{G} be $PSL_n(k) = PGL_n(k)$ and $\sigma \in \{\phi_q, \phi_q\tau\}$, such that $\overline{G} = PSL_n^{\epsilon}(q)$ is a finite simple group. Let $\overline{T} \leq \overline{G}$ be the image of the subgroup of all diagonal matrices of $GL_n(k)$, so \overline{T} is a maximal σ -stable torus. If \overline{T}^g is a maximal σ -stable torus of \overline{G} , then $S := (\overline{T}^g)_{\sigma} \cap G$ is nondegenerate always, except the case $G = PSL_n(2)$ and $w := \pi(g^{\sigma}g^{-1})$ is of type $(n_1)(n_2)\dots(n_m)$, where $n_1 = n_2 = 1$.

< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 0 0

EXCEPTIONAL GROUPS

<ロト < 回ト < 回ト < 回ト < 回ト -

(B.) Theorem 3 $N(G, T) = N_G(T) \text{ for all tori of groups}$ ${}^2G_2(3^{2n+1}); {}^2B_2(2^{2n+1}); {}^2F_4(2^{2n+1}); {}^3D_4(q^3); {}^G_2(q), q > 3; {}^F_4(q), q > 3; {}^2E_6(q^2), q > 3; {}^E_6(q), q > 3; {}^E_7(q), q > 3; {}^E_8(q), q > 5;$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $N(G, T) = N_G(T)$ if there are no root subgroups in $\overline{R} := C_{\overline{G}}(T)^0$.

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $N(G, T) = N_G(T)$ if there are no root subgroups in $\overline{R} := C_{\overline{G}}(T)^0$. Assume there is a root subgroup in \overline{R} .

◆□▶ ◆母▶ ◆三▶ ◆三▶ 三三 ◇◇◇

 $N(G, T) = N_G(T)$ if there are no root subgroups in $\overline{R} := C_{\overline{G}}(T)^0$. Assume there is a root subgroup in \overline{R} .

 \overline{R} is a reductive subgroup of maximal rank and $R := \overline{R} \cap G$ is a reductive subgroup of maximal rank in G.

 $N(G, T) = N_G(T)$ if there are no root subgroups in $\overline{R} := C_{\overline{G}}(T)^0$. Assume there is a root subgroup in \overline{R} .

 \overline{R} is a reductive subgroup of maximal rank and $R := \overline{R} \cap G$ is a reductive subgroup of maximal rank in G.

 $T \leq Z(R)$, so |T| divides |Z(R)|.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

 $N(G, T) = N_G(T)$ if there are no root subgroups in $\overline{R} := C_{\overline{G}}(T)^0$. Assume there is a root subgroup in \overline{R} .

 \overline{R} is a reductive subgroup of maximal rank and $R := \overline{R} \cap G$ is a reductive subgroup of maximal rank in G.

 $T \leq Z(R)$, so |T| divides |Z(R)|.

If for every reductive subgroup of maximal rank R of G, |T| does not divide |Z(R)|, then there are no \overline{T} -root subgroups in $C_{\overline{G}}(T)^0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

 $N(G, T) = N_G(T)$ if there are no root subgroups in $\overline{R} := C_{\overline{G}}(T)^0$. Assume there is a root subgroup in \overline{R} .

 \overline{R} is a reductive subgroup of maximal rank and $R := \overline{R} \cap G$ is a reductive subgroup of maximal rank in G.

 $T \leq Z(R)$, so |T| divides |Z(R)|.

If for every reductive subgroup of maximal rank R of G, |T| does not divide |Z(R)|, then there are no \overline{T} -root subgroups in $C_{\overline{G}}(T)^0$.

Orders of T are known. If q is not "bad" then \overline{R} is the connected centralizer of a semisimple element and corresponding orders of |Z(R)| are also known.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ● ○ ○ ○ ○