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(Affine) Algebraic groups

A set G is an (affine) algebraic group over algebraicly closed field & if:
e G is a group;
® G is an (affine) algebraic variety;

* (x,y) > xy (Gx G — G)and x+ x~1 (G — G) — morphisms of
varieties.

Example

GLa(K) = {(a;) € k™); det(a;) # 0} C k(™)

GLo(K) = {(a11, - - - anm, b) € kU™ b det(ay) = 1} C k(D)

Every linear algebraic group (closed subgroup of GL,(k)) is affine. Every
affine algebraic group is linear (isomorphic to a closed subgroup of GL,(k)).
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Maximal tori and Simple groups

Let Dp(k) be the subgroup of all diagonal matrices of GL,(k). An algebraic
group isomorphic to D,(k)(Z k* x ... X k*) is a torus.
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Maximal tori and Simple groups

Let Dp(k) be the subgroup of all diagonal matrices of GL,(k). An algebraic
group isomorphic to D,(k)(Z k* x ... X k*) is a torus.

All maximal tori of G are conjugate in G.

G is reductive if its unipotent radical R,(G) is trivial.

G is simple if G has no proper closed connected normal subgroups (any
normal subgroup must be finite and must lie in the centre)

Let 7 be a max. torus. Let B be a Borel subgroup of G. B
If G is reductive connected, then there is the unique Borel subgroup B
suchthat BNB =T.

Example
G = SL,(k) is simple, T = D,(k) N G is max. torus, B is the subgroup of
upper triangular matrices, B — lower triangular matrices.
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Roots

Let C be minimal proper subgroup of R,(B) or R,(B ), normalized by T.
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Roots

Let C be minimal proper subgroup of R,(B) or R,(B ), normalized by T.
C is isomorphic to k.

There is a homomorphism T — Aut(k™) 2 k*.

Hence C determines an element of Hom(T, k*) = X.

Such elements of X are T-roots of G.

Roots form a finite subset ® of X (independent of the choice of B
containing T.)

The subgroup giving rise to @ € X is a root subgroup X,,.

Example

P=A={F(ai—a)1<i<j<I+1} Xo—a ={E +tey; t € k}
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Frobenius maps
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Frobenius maps
Let char(k) = p >0 and g = p°.
Let o : (a5) = (ay))-

Homomorphism ¢ : G — G is a standard Frobenius map if there exists
injective hom. i : G — GL,(k) for some n s.t.

i(o(g)) = dq(i(g)) forall g € G.

A hom. o is a Frobenius map if some power of o is a standard Frobenius
map.

If o is a Frobenius map then G, := {g € G : o(g) = g} is a finite group.

Example
G = GLp(k), 0 = ¢¢, Go = GLy(q).
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Let G be simple algebraic over k, char(k) = p > 1. Let OP'(G,) be the
group generated by all p-elements of G,.
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Let G be simple algebraic over k, char(k) = p > 1. Let OP'(G,) be the
group generated by all p-elements of G,.

A group 0P (G,)' < G < G, is a finite group of Lie type.
There are finitely many simple algebraic groups for given k and ®.

For fixed k and @ there is unique simple alg. group G, (universal or
simply-connected) such that every simple G is quotient of G, by
K < Z(G,).

Simple alg. group G, with trivial center is adjoint.
If G is adjoint, then OP'(G,) is a finite simple group (with few exceptions).
If G is universal, then G, = OP'(G,)

Example

®=A;, Gy = SLii1(k), Ga = PSLit1(k) = PGL41 (k).
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Let G be simple algebraic over k, char(k) = p > 1. Let OP'(G,) be the
group generated by all p-elements of G,.

A group 0P (G,)' < G < G, is a finite group of Lie type.
There are finitely many simple algebraic groups for given k and ®.

For fixed k and @ there is unique simple alg. group G, (universal or
simply-connected) such that every simple G is quotient of G, by
K < Z(G,).

Simple alg. group G, with trivial center is adjoint.
If G is adjoint, then OP'(G,) is a finite simple group (with few exceptions).
If G is universal, then G, = OP'(G,)

Example
® = A, Gy = SLi1(k), Ga = PSLit1(k) = PGL1y1(K).

0 = ¢g, (Gu)o = 07 ((Gu)o) = SLi+1(q). (Ga)e = PGL111(q),
07 ((Ga)o) = PSLi11(q)
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then

Let 7 be a maximal o-invariant torus of G and N 7),
G is the

=Yg
T := T NG is a maximal torus of G and N(G, T) NN
algebraic normalizer of T in G.

Ne(T
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Let T be a maximal o-invariant torus of G and NV := Nz(T), then
T:=T NG is amaximal torus of G and N(G, T) := NN G is the
algebraic normalizer of T in G.

Obviously, N(G, T) < Ng(T).

Problem

In "Seminar on Algebraic Groups..." Springer and Steinberg consider
reductive alg. groups and prove sufficient condition for N(G, T) = Ng(T).
They asked what are the exceptions. Our goal is to find all the exceptions
when G is simple.
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then

Let T be a maximal o-invariant torus of G and N := N=(T),
G is the

e
T :=TNG is a maximal torus of G and N(G, T) NN
algebraic normalizer of T in G.
Obviously, N(G, T) < Ng(T).

Problem

In "Seminar on Algebraic Groups..." Springer and Steinberg consider
reductive alg. groups and prove sufficient condition for N(G, T) = Ng(T).
They asked what are the exceptions. Our goal is to find all the exceptions
when G is simple.

Example

char(k) =2, G = SLp(k), 0 = ¢2, T = Dp(k) N G;
G = SLy(2),

N is the set of monomial matrices, so N(G, T) = Sym(n);
T = {lpxn}, so Ng(T) = G.
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H < T, is nondegenerate if no root of G with respect to T satisfies
a(t)=1forall t € H.
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H < T, is nondegenerate if no root of G with respect to T satisfies
a(t)=1forall t € H.
Springer and Steinberg

Let T be o-stable max. torus of connected reductive G. If T is
nondegenerate, then N(G, T) = Ng(T).
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H < T, is nondegenerate if no root of G with respect to T satisfies
a(t)=1forall t € H.
Springer and Steinberg

Let T be o-stable max. torus of connected reductive G. If T is
nondegenerate, then N(G, T) = Ng(T).

Lemma

Let G, =£(Gy). Let S < Gy and T = £(S) < G, be maximal o-stable
tori. Torus T := T, N O ((G,),) is nondegenerate in G, if and only if
torus S, is nondegenerate in G,.
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H < T, is nondegenerate if no root of G with respect to T satisfies
a(t)=1forall t € H.

Springer and Steinberg

Let T be o-stable max. torus of connected reductive G. If T is
nondegenerate, then N(G, T) = Ng(T).

Lemma

Let G, =£(Gy). Let S < Gy and T = £(S) < G, be maximal o-stable
tori. Torus T := T, N O ((G,),) is nondegenerate in G, if and only if
torus S, is nondegenerate in G,.

Carter

If G is connected reductive then all maximal tori of G, are nondegenerate
provided g is sufficiently large.
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G,-classes of tori

W = N/T does not depend on choice of T.
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o actson W by w?o =7(n’); w=nT, neN.

w1 and wp € W are o-conjugate if w; = (w™1)wow for some w € W.

Carter

Let g € G. A torus T° is o-invariant if and only if g7g~1 € N. The map
T — 7(g°g 1) is a bijection between G,-conjugacy classes of maximal
o-invariant tori of G and classes of o-conjugate elements of W.
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G,-classes of tori

W = N/T does not depend on choice of T.
Fix a maximal o-stable torus T of G. Let © — natural hom. 7 : N — W.
o actson W by w?o =7(n’); w=nT, neN.

w1 and wp € W are o-conjugate if w; = (w™1)wow for some w € W.

Carter

Let g € G. A torus T° is o-invariant if and only if g7g~1 € N. The map
T — 7(g°g 1) is a bijection between G,-conjugacy classes of maximal
o-invariant tori of G and classes of o-conjugate elements of W.

Let gg ' € N and m(g°g ') = w. Then (Tg)g = (Tow)8.
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CLASSICAL GROUPS
On the example of PSL;,
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Let 7 be the inverse-transpose map on GLu(k).
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Let 7 be the inverse-transpose map on GL, (k).
Let G = SL,(k) and T = Dy(k) N G, then W = Sym(n) and
o € {¢q, 4T} acts trivial on W.
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Let 7 be the inverse-transpose map on GLu(k).

Let G = SL,(k) and T = D,(k)N G, then W =2 Sym(n) and

o € {¢q, 4T} acts trivial on W.

G ,-classes of maximal tori < conjugacy classes of elements of Sym(n).
The standard representative of a class is

(1,...,m)(m+1,....m+mm)...(n—np+1...,n)

m

n1§n2<-~-<nm;§ ni=n
i=1
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Let 7 be the inverse-transpose map on GLu(k).

Let G = SL,(k) and T = D,(k)N G, then W =2 Sym(n) and

o € {¢q, 4T} acts trivial on W.

G ,-classes of maximal tori < conjugacy classes of elements of Sym(n).
The standard representative of a class is

m
n1<n2<-~-<nm;g ni=n

Buturlakin and Grechkoseeva

Let w be the standard representative of type (n1)(n2)...(nm), U be the
subgroup of GL,(k) of all block-diagonal matrices bd(D;, ..., Dy,) such

that D; = diag(Aj, A7, ..., )\(-Eq)niil), )\Ssq)nifl =1, for all

]

i€{1,2,...,m}. Then T,, = UNG.
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(B.) Theorem 1

Let G be SLn(k) and o € {¢g, 47}, s0 G, = SL;(q). Let T be the
subgroup ofjll diagonal matrices in G. If T is a maximal o-stable torus,
then S := (T%), is nondegenerate always, except the case G, = SL,(2)
and w := 71(g%g 1) is of type (n1)(n2)...(nm), where ny = ny = 1.
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(B.) Theorem 1

Let G be SLn(k) and o € {¢g, 47}, s0 G, = SL;(q). Let T be the
subgroup of all diagonal matrices in G. If T% is a maximal o-stable torus,
then S := (T%), is nondegenerate always, except the case G, = SL,(2)
and w := 7(g7g 1) is of type (n1)(n2)...(ny), where ny = np = 1.

(B.) Theorem 2

Let G be PSL,(k) = PGLn(k) and o € {¢,, ¢,7}, such that G = PSLE(q)
is a finite simple group. Let T < G be the image of the subgroup of all
diagonal matrices of GL,(k), so T is a maximal o-stable torus. If 7% is a
maximal o-stable torus of G, then S := (T%), N G is nondegenerate
always, except the case G = PSL,(2) and w := m(g°g ') is of type
(m)(n2)...(nm), where ny = np = 1.
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EXCEPTIONAL GROUPS
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(B.) Theorem 3
N(G, T) = Ng(T) for all tori of groups
2G2(32n+1); 2B2(22n+1);
2F4(22n+1); 3D4(q3);
G2(9),9 >3;  Fu(q),q>3;
2Es(q%), 9 >3, Eos(q),q > 3;
Ex(q),9>3; Es(q),q > 5;

Anton Baykalov (UoA) Algebraic normalizers 14 /15



Idea of the proof

N(G, T) = Ng(T) if there are no root subgroups in R := Cz(T)°.
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Idea of the proof

N(G, T) = Ng(T) if there are no root subgroups in R := Cz(T)°.
Assume there is a root subgroup in R.

R is a reductive subgroup of maximal rank and R := RN G is a reductive
subgroup of maximal rank in G.

T < Z(R), so | T| divides |Z(R)].

If for every reductive subgroup of maximal rank R of G, |T| does not
divide |Z(R)|, then there are no T-root subgroups in Cz(T)°.

Orders of T are known. If g is not "bad" then R is the connected
centralizer of a semisimple element and corresponding orders of |Z(R)| are
also known.
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