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(Affine) Algebraic groups

A set G is an (affine) algebraic group over algebraicly closed field k if:

• G is a group;
• G is an (affine) algebraic variety;
• (x , y) 7→ xy (G × G → G ) and x 7→ x−1 (G → G ) – morphisms of

varieties.

Example

GLn(k) = {(aij) ∈ k(n
2); det(aij) 6= 0} ⊆ k(n

2)

GLn(k) = {(a11, . . . , ann, b) ∈ k(n
2+1); b · det(aij) = 1} ⊆ k(n

2+1)

Every linear algebraic group (closed subgroup of GLn(k)) is affine. Every
affine algebraic group is linear (isomorphic to a closed subgroup of GLn(k)).
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Maximal tori and Simple groups

Let Dn(k) be the subgroup of all diagonal matrices of GLn(k). An algebraic
group isomorphic to Dn(k)(∼= k∗ × . . .× k∗) is a torus.

All maximal tori of G are conjugate in G .

G is reductive if its unipotent radical Ru(G ) is trivial.

G is simple if G has no proper closed connected normal subgroups (any
normal subgroup must be finite and must lie in the centre)

Let T be a max. torus. Let B be a Borel subgroup of G .
If G is reductive connected, then there is the unique Borel subgroup B

−

such that B ∩ B
−

= T .

Example

G = SLn(k) is simple, T = Dn(k) ∩ G is max. torus, B is the subgroup of
upper triangular matrices, B− – lower triangular matrices.
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Roots

Let C be minimal proper subgroup of Ru(B) or Ru(B
−

), normalized by T .

C is isomorphic to k+.

There is a homomorphism T → Aut(k+) ∼= k∗.

Hence C determines an element of Hom(T , k∗) = X .

Such elements of X are T -roots of G .

Roots form a finite subset Φ of X (independent of the choice of B
containing T .)

The subgroup giving rise to α ∈ X is a root subgroup Xα.

Example

G = SLl+1(k), T = Dl+1(k) ∩ G ;
Φ = Al = {±(ai − aj)|1 6 i < j 6 l + 1}; Xai−aj = {E + teij ; t ∈ k}
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Frobenius maps

Let char(k) = p > 0 and q = pe .

Let φq : (aij) 7→ (aqij).

Homomorphism σ : G → G is a standard Frobenius map if there exists
injective hom. i : G → GLn(k) for some n s.t.

i(σ(g)) = φq(i(g)) for all g ∈ G .

A hom. σ is a Frobenius map if some power of σ is a standard Frobenius
map.

If σ is a Frobenius map then Gσ := {g ∈ G : σ(g) = g} is a finite group.

Example

G = GLn(k), σ = φq, Gσ = GLn(q).
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Let G be simple algebraic over k , char(k) = p > 1. Let Op′(Gσ) be the
group generated by all p-elements of Gσ.

A group Op′(Gσ)′ 6 G 6 Gσ is a finite group of Lie type.

There are finitely many simple algebraic groups for given k and Φ.

For fixed k and Φ there is unique simple alg. group Gu (universal or
simply-connected) such that every simple G is quotient of Gu by
K 6 Z (Gu).

Simple alg. group G a with trivial center is adjoint.

If G is adjoint, then Op′(Gσ) is a finite simple group (with few exceptions).

If G is universal, then Gσ = Op′(Gσ)

Example

Φ = Al , Gu
∼= SLl+1(k), G a

∼= PSLl+1(k) = PGLl+1(k).

σ = φq, (Gu)σ = Op′((Gu)σ) ∼= SLl+1(q), (G a)σ ∼= PGLl+1(q),
Op′((G a)σ) ∼= PSLl+1(q)
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There are finitely many simple algebraic groups for given k and Φ.

For fixed k and Φ there is unique simple alg. group Gu (universal or
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Let T be a maximal σ-invariant torus of G and N := NG (T ), then
T := T ∩ G is a maximal torus of G and N(G ,T ) := N ∩ G is the
algebraic normalizer of T in G .

Obviously, N(G ,T ) 6 NG (T ).

Problem
In "Seminar on Algebraic Groups..." Springer and Steinberg consider
reductive alg. groups and prove sufficient condition for N(G ,T ) = NG (T ).
They asked what are the exceptions. Our goal is to find all the exceptions
when G is simple.

Example

char(k) = 2, G = SLn(k), σ = φ2, T = Dn(k) ∩ G ;
G = SLn(2),
N is the set of monomial matrices, so N(G ,T ) ∼= Sym(n);
T = {In×n}, so NG (T ) = G .
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H 6 T σ is nondegenerate if no root of G with respect to T satisfies
α(t) = 1 for all t ∈ H.

Springer and Steinberg

Let T be σ-stable max. torus of connected reductive G . If T is
nondegenerate, then N(G ,T ) = NG (T ).

Lemma

Let G a = ξ(Gu). Let S 6 Gu and T = ξ(S) 6 G a be maximal σ-stable
tori. Torus T := T σ ∩ Op′((G a)σ) is nondegenerate in G a if and only if
torus Sσ is nondegenerate in Gu.

Carter

If G is connected reductive then all maximal tori of Gσ are nondegenerate
provided q is sufficiently large.
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Gσ-classes of tori

W = N/T does not depend on choice of T .

Fix a maximal σ-stable torus T of G . Let π – natural hom. π : N →W .

σ acts on W by wσ = π(nσ); w = nT , n ∈ N.

w1 and w2 ∈W are σ-conjugate if w1 = (w−1)σw2w for some w ∈W .

Carter

Let g ∈ G . A torus T g is σ-invariant if and only if gσg−1 ∈ N. The map
T

g 7→ π(gσg−1) is a bijection between Gσ-conjugacy classes of maximal
σ-invariant tori of G and classes of σ-conjugate elements of W .

Let gσg−1 ∈ N and π(gσg−1) = w . Then (T
g

)σ = (T σw )g .
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CLASSICAL GROUPS

On the example of PSLεn
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Let τ be the inverse-transpose map on GLn(k).

Let G = SLn(k) and T = Dn(k) ∩ G , then W ∼= Sym(n) and
σ ∈ {φq, φqτ} acts trivial on W.
Gσ-classes of maximal tori � conjugacy classes of elements of Sym(n).
The standard representative of a class is

(1, . . . , n1)(n1 + 1, . . . , n1 + n2) . . . (n − nm + 1, . . . , n)

n1 6 n2 6 . . . 6 nm;
m∑
i=1

ni = n

Buturlakin and Grechkoseeva
Let w be the standard representative of type (n1)(n2) . . . (nm), U be the
subgroup of GLn(k) of all block-diagonal matrices bd(D1, . . . ,Dm) such
that Di = diag(λi , λ

εq
i , . . . , λ

(εq)ni−1

i ), λ(εq)
ni−1

i = 1, for all
i ∈ {1, 2, . . . ,m}. Then T σw = U ∩ G .
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(B.) Theorem 1

Let G be SLn(k) and σ ∈ {φq, φqτ}, so Gσ = SLεn(q). Let T be the
subgroup of all diagonal matrices in G . If T g is a maximal σ-stable torus,
then S := (T

g
)σ is nondegenerate always, except the case Gσ = SLn(2)

and w := π(gσg−1) is of type (n1)(n2) . . . (nm), where n1 = n2 = 1.

(B.) Theorem 2

Let G be PSLn(k) = PGLn(k) and σ ∈ {φq, φqτ}, such that G = PSLεn(q)
is a finite simple group. Let T 6 G be the image of the subgroup of all
diagonal matrices of GLn(k), so T is a maximal σ-stable torus. If T g is a
maximal σ-stable torus of G , then S := (T

g
)σ ∩ G is nondegenerate

always, except the case G = PSLn(2) and w := π(gσg−1) is of type
(n1)(n2) . . . (nm), where n1 = n2 = 1.
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EXCEPTIONAL GROUPS
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(B.) Theorem 3

N(G ,T ) = NG (T ) for all tori of groups

2G2(32n+1); 2B2(22n+1);
2F4(22n+1); 3D4(q3);
G2(q), q > 3; F4(q), q > 3;

2E6(q2), q > 3; E6(q), q > 3;
E7(q), q > 3; E8(q), q > 5;
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Idea of the proof

N(G ,T ) = NG (T ) if there are no root subgroups in R := CG (T )0.

Assume there is a root subgroup in R.

R is a reductive subgroup of maximal rank and R := R ∩ G is a reductive
subgroup of maximal rank in G .

T 6 Z (R), so |T | divides |Z (R)|.

If for every reductive subgroup of maximal rank R of G , |T | does not
divide |Z (R)|, then there are no T -root subgroups in CG (T )0.

Orders of T are known. If q is not "bad" then R is the connected
centralizer of a semisimple element and corresponding orders of |Z (R)| are
also known.
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